提起家乡的小河,没有人不竖起大拇指。走近小河,一股清新的空气使人心旷神怡,河水清澈见底,河水流过的声音胜过天下所有的音乐,细细的,轻轻的,好像是小河在和你聊天呢!岸边是一片草地,青草很柔软,躺在草地上,就好像置身于美丽的童话世界。
我已经有好长一段时间没有去小河了,想去小河看看。当我再次走向小河时,惊呆了,河水变得浑浑的,水面还飘着“新型鱼儿”——塑料袋和啤酒瓶,绿茵茵的草地,取代它的是几棵奄奄一息的枯草。突然,一股难闻的气味扑鼻而来,我赶紧捂住鼻子跑开了。不可能!这不可能是家乡的小河!我怎么也没有办法把眼前的小河和我印象中的小河联系在一起,可是,不管我怎么说服自己:这不是真的!都无法改变事实。
我向附近的人打听了一下,才知道原来在小溪的上游,新建了几家工厂,每天都会派出大量的废气,搞得小河乌烟瘴气,真是太可恶了!
这一切引发了我深深地思考,人类有规则,大自然也有它的规则,如果我们执意要去破坏这个规则,去破坏环境,后果不堪设想。
让我们从身边的小事做起,齐心协力共同保护环境,保护我们的明天。
陪刘昶看完电影出来,已经快10点了,可是刘昶劲头还是很足。是啊 ,今天看的是奥特曼的电影,确实够让他兴奋的。迎着习习晚风,刘昶提议说:“妈妈,咱们来找规律吧!”
“什么规律?怎么找?”刘昶的话让我一头雾水。
刘昶微皱着眉,想着怎么跟我这个“学生”讲解。他指着两边的树说:“你看这些树,它们总是一棵大,一棵小,这就是它们的规律。”
哦,我明白了。这应该是最近数学书上正在学习的“找规律”的内容。刘昶愿意在生活中学习数学,我自然乐得配合。“那么,咱们找吧!看谁找得多!”
我仔细地找,发现脚下的地砖颜色很有规律。“地砖总是一块红色,一块黄色!”我抢着说。
刘昶也在找:“那边的灯一闪一闪,总是红色、绿色、蓝色这样来变化!”
刘昶突然蹦来蹦去,让我找他动作的规律。我仔细一观察,原来,刘昶隔一块砖蹦一下,隔一块砖蹦一下。嘿,还真挺有意思。
刘昶又规规矩矩地走了起来,还让我找规律。这下可难住我了,我左看右看也没有看出门道。刘昶说:“你看,我的左手在前的时候,我的右手在后;我的右手在前的时候,我的左手在后。”哈哈,是啊,运动也有规律可找啊,我怎么就没有发现呢?
走着走着,刘昶又开始玩花样了。他先隔一块砖蹦一下,再隔两块砖蹦,然后隔着三块砖蹦,想让我找规律。可是,奈何小小刘昶,腿儿不长,蹦不了四块砖那么远的距离,急得他不行,却把我乐坏了。
数学就在我们身边,是实实在在的。当数学知识和生活联系在一起,它就会趣味横生,甚至妙不可言。和孩子一起,爱上数学吧!
找规律是一种十分锻炼人逻辑思维的数理游戏,它千变万化,没有一种固定的模式。有些同学可能讨厌它,认为它很枯燥很无奈,一碰到这样的题就变得抓耳挠腮。但我很喜欢,因为在找规律的.过程中不但锻炼了我的观察力、相互联系的能力及逻辑思维能力,我还从中到了无穷的乐趣。
其实,我对找规律的喜好,还是从做妈妈给我买的《哈佛给学生做的300个思维游戏》这本书上的游戏开始的。书中列举了300个思维游戏题,内容丰富,形式活泼,其中有许多找规律的题型。例如:你能找出最后一个数字盘中问号部分应当填入的数字吗?
猛一看三个圆盘中相连的两个数字之间毫无规律可言,这可怎么解呢?别急,慢慢地观察或许不难发现,假若把每个圆盘中相对应的一组数字拿出来比较一下,规律好像就出来了。真的吔,每个圆盘中相对应的一组数字之间都存在相同的倍数,或叫“特定数”。如:
第一个圆盘中:21÷7=3 9÷3=3 15÷5=3 27÷9=3;即第一个圆盘中的特定数就是3。
第二个圆盘中:30÷5=6 24÷4=6 12÷2=6 36÷6=6;即第二个圆盘中的特定数就是6。
好吧,既然第一、第二个圆盘中的规律都是找“特定数”,那么第三个圆盘中相对应的一组数字也应该符合这个规律,即找特定数。从9÷1=9 45÷5=9 27÷3=9 就可得出,第三个圆盘的特定数是9。以此类推,?÷8 = 9 那么 ?= 72
所以,问号部分应当填入数字72。
啊!终于找出来了问号部分的答案了。每当此时,我都无比的激动和兴奋。因为经过苦苦思索后,又猛然间豁然开朗,那种成功的喜悦是任何言语都无法形容的。
就是这样,一次次的苦思觅想,一次次的豁然开朗,使我欲罢不能。慢慢地我喜欢上了这种痛苦并快乐着的找规律游戏,只有亲身经历过的人才能真正体会到其中的乐趣。
通过找规律的游戏,我渐渐地领悟到一个真理:规律是看不见摸不着的,只有深入其中,不断探索,勇于拼搏的人才能真正的找到它。
找规律是一种十分锻炼人逻辑思维的数理游戏,它千变万化,没有一种固定的模式。有些同学可能讨厌它,认为它很枯燥很无奈,一碰到这样的题就变得抓耳挠腮。但我很喜欢,因为在找规律的过程中不但锻炼了我的观察力、相互联系的能力及逻辑思维能力,我还从中体会到了无穷的乐趣。
其实,我对找规律的喜好,还是从做妈妈给我买的《哈佛给学生做的300个思维游戏》这本书上的.游戏开始的。书中列举了300个思维游戏题,内容丰富,形式活泼,其中有许多找规律的题型。例如:你能找出最后一个数字盘中问号部分应当填入的数字吗?
猛一看三个圆盘中相连的两个数字之间毫无规律可言,这可怎么解呢?别急,慢慢地观察或许不难发现,假若把每个圆盘中相对应的一组数字拿出来比较一下,规律好像就出来了。真的吔,每个圆盘中相对应的一组数字之间都存在相同的倍数,或叫“特定数”。如:
第一个圆盘中:21÷7=3 9÷3=3 15÷5=3 27÷9=3;即第一个圆盘中的特定数就是3。
第二个圆盘中:30÷5=6 24÷4=6 12÷2=6 36÷6=6;即第二个圆盘中的特定数就是6。
好吧,既然第一、第二个圆盘中的规律都是找“特定数”,那么第三个圆盘中相对应的一组数字也应该符合这个规律,即找特定数。从9÷1=9 45÷5=9 27÷3=9 就可得出,第三个圆盘的特定数是9。以此类推,?÷8 = 9 那么 ?= 72
所以,问号部分应当填入数字72。
啊!终于找出来了问号部分的答案了。每当此时,我都无比的激动和兴奋。因为经过苦苦思索后,又猛然间豁然开朗,那种成功的喜悦是任何言语都无法形容的。
就是这样,一次次的苦思觅想,一次次的豁然开朗,使我欲罢不能。慢慢地我喜欢上了这种痛苦并快乐着的找规律游戏,只有亲身经历过的人才能真正体会到其中的乐趣。
通过找规律的游戏,我渐渐地领悟到一个真理:规律是看不见摸不着的,只有深入其中,不断探索,勇于拼搏的人才能真正的找到它。
大家都应该有过这样的经历:把一些热水倒进杯子里,不一会儿,杯子、桌子都变热了。这是为什么呢?因为热水把热量传给了杯子和桌子。
自然界中处处都有能量的转化和传递,但总量不变。这就关系到自然界最普遍的定律——能量守恒与转化定律。
这个定律是英国的焦耳最先发现的。1840年的一天,焦耳注意到一个现象:金属线通电后会发热。他决心弄清电与热的关系,设计了一个实验:在玻璃管中装满水,并放入一个温度计,测量温度后,将通电的金属线放入水中,金属线变得非常热,水的温度也升高了。这个实验说明了电能转化为了热能。通过无数个实验证明,不同形式的能量可以相互转化,但能量的总值不变。
能量转换时时发生在我们身边,灯泡通电后会发热,那是电能转化为热能;电灯变亮,是电能转化为光能;汽车开动时燃料燃烧,汽油的化学能转化为热能,再转化为机械能;电扇转动时,电能变成了机械能……真是不胜枚举。
我爸爸妈妈都在萧山发电厂工作,而爸爸还是发电厂的锅炉专家呢!烧的是煤,发出来的是电,这不是一个能量转换吗?那它是怎么实现的呢?它的过程又是怎样的呢?我的心里充满着无数个好奇和疑问。于是我专访了专业人士——爸爸。爸爸花了极大的时间和精力讲述了由煤到电的复杂过程,还给我看了一些书,我大致总结如下:燃料在锅炉中燃烧放出热能,并将热能转给水,藉以产生一定的压力和温度的蒸汽,通过管道将蒸汽引入汽轮机,带动发电机发电。这是一个将燃料的化学能转化为热能,再将热能转化为机械能,进而转化为电能的过程。在能量的转化中,好大一部分能量在过程中损失了(中型的火力发电厂发电效率为40%多),但能量的总值是不变的。
能量守恒定律是自然界中的普遍规律,在形形式式的自然现象中,只要有能量转换,就一定服从能量守恒的规律;能量守恒定律反映了自然界的普遍联系,各种自然现象都不是孤立的,而是相互联系的;能量守恒定律是人类认识自然和利用自然的重要武器,从原始人钻木取火到水能利用,从太阳能到核能的利用。
在能源资源日渐紧缺的今天,我们应该致力于提高能源的利用率,甚至研究自然界频发的像地震、海啸、飓风等给人们生活带来巨大灾难的巨能转化为可用资源,既减小了灾害,又解决了能源危机。真是何乐而不为呢?
当母亲说这种鱼是结对出现时,小孩不信母亲的说法,于是又去寻找,果然小孩又找到了一条类似的鱼。是什么让母亲知道肯定还有一条鱼?又是什么使小孩真的找到了那另一条鱼?是自然的规律。那种鱼会结对出现是难以改变的自然规律。
自然的规律能让小孩找到另一条鱼,也能让我们找到正确的发展之路。
遵循自然的规律,它会给科学引领正确的方向,当门捷列夫用扑克牌排成最早的元素周期表时,在场的科学家鲜有认同。但当门捷列夫预测的元素一一被发现且性质相近时,门捷列夫对人们的惊奇却微微一笑:“这不过是自然的规律”。是啊,门捷列夫不过是发现了简单的自然规律,可正是遵循着这些自然规律,人们发现了一个又一个未知的元素。
合理地运用自然规律,它必将推动科学社会的发展,反之,若不遵守自然的规律,则必然会造成失败的苦果。好大喜功的中国人在中国统一后大搞“大跃进”,提出在十年内赶超英美这样不切实际的目标,“人有多大胆,地有多大产”在当时风靡一时,可这样严重违反自然规律的说法不可避免地导致了失败。前人失败的例子无时无刻不在激励着我们,要在遵守自然规律的基础上发展,这样才能收获成功。
即使有巨大的利益在眼前,可我们仍应保持清醒,遵守自然规律。工业化时期,贪婪的人们不断地生产,全然不顾工业尾气对地球生态环境造成的严重危害。于是乎,海平面上升,全球变暖,酸雨危害这些灾难接踵而至。人们开始重新审视自己犯下的“滔天大罪”,开始重新按规律生产,减少对自然的危害,遵守自然规律发展,这样才能让人类的生活更美好。
诚然,你可以将哥白尼等科学家送上火架台,但“日心说”的自然规律却不会因此改变,同样,无论再怎么否认,自然规律就是客观存在的,它并不会随人类的意志而改变。
因此,遵守自然的规律,这样你才能取得更好的发展。
昨天晚上,我写作业的时候,遇到了一个奥数难题:有四种水果,它们千克数的乘积在200~250之间,这些水果最少共有多少千克?我想不出来怎么做,就去问爸爸。爸爸让我自己把题多读几遍,好好它的意思。
我读了几遍,还是不太懂。爸爸没有直接告诉我答案,而是给我提了个问题:两个数的乘积等于20,这样的两个数有几组?哪一组的和最大?哪一组的和最小?
我说:有三组:1和20,2和10,4和5;
第一组的和1+20=21最大;
第二组的和2+10=12较小;
第三组的和4+5=9最小。
爸爸让我找规律,并提示我:是不是两个数差的越大,和越大?差的越小,和越小?
我发现就是这么个规律:差值越大,和越大;差值越小,和越小。
啊!我知道该怎么做了:要想符合乘积在200~250之间,总重量最少这两个条件,四种水果的千克重差值一定要小。
所以,这组数应该是:2、3、5、7;
它们的乘积是:2*3*5*7=210;
它们的和是:2+3+5+7=17。
由于不能确定我的答案是否正确,爸爸又编了个小程序,把乘积在200~250之间的所有数列了一个表,发现我分析的结果是正确的。
同时,我发现这道题还有另一个答案:2、4、5、6(2×4×5×6=240,2+4+5+6=17);我还发现“差值越大,和越大”这个规律也是正确的。
传说春秋时候,宋国有个农夫,播下麦种后,整日蹲在阡陌上,望着自家那一亩见方的麦田,希望麦子赶快成熟抽穗,可是麦苗仍旧慢慢地生长。一日清晨,他实在急不可耐,来到麦田里,把每株麦苗都拔高了一节。直到日落西山,才筋疲力尽地回到家里,他兴奋地对儿子说:“今天把我累坏了,不过田中的麦苗,都长高了一大节。”儿子听罢,大惊失色,跑到田里一看,麦苗全都枯萎了。
植物生长是有规律的,首先,要适时下种,其次,要有足够的水分,适当的肥料,充足的日照和适宜的温度,只有遵从这一切,植物才能生长茂盛,违反了这些规律,植物轻则生长缓慢,重则导致死亡。可见,事物的发展都是有规律的。
我们都希望自己学习成绩优异,这其间同样有一定的规律,就是要有锲而不舍的精神和正确的学习方法。只有每一节课都专心听讲,对每一个定义的含意和适用范围都能透彻理解,每一天都认真预习、复习,仔细琢磨定义之间的逻辑,关系,力求运用自如,学习才能获得“丰收”,如果诸如此类的.事情都不去做,只靠前的“临阵磨枪”,那即使得到“理想”的分数,知识也会象那被拔了节儿的麦苗一样,很快枯萎,如果为了得到“理想”的分数去抄袭他人的现成答案,就连心灵中智慧的禾苗也要枯死。
思想上的进步也是循序渐进的。“人恒过,然后能改”。我们对待有错误的同学,首先应当相信他能改,然后对他善意诚恳地提出批评,这种批评应该是恰如其分的,实事求是的。不能认为批评越尖锐,言词越刻薄越好。如果急于求成,企图一蹴而就,或是脱离实际,只图一时痛快,反而会好心办了坏事,引起被帮助者的反感。这种类似拔苗助长的事情在社会生活中是常常发生的。
我们千万不要学那个农夫,只一味地求快,不按客观规规律办事。古语说:欲速则不达。我们只有认识事物规律,按照事物规律办事,才能取得胜利。
© 2022 xuexicn.net,All Rights Reserved.