创意法教育实质就是在课堂教学中创造新意,充分体现学生的主体性,让学生成为课堂教学的主人。为了使学生更能自主地学习,用创意法教育理念上好六年级数学课,显得尤其重要。归纳有如下几点:
一、出示学习目标,落实基础知识,实现“三维目标”的统一
创意法教育课堂教学的目标是指学生自己学习目标,不是教师的教学目标,它包含“知识与技能,过程与方法,情感、态度、价值观”这三维目标的统一。六年级数学教学,一方面要完成本年级新知传授,另一方面,还要帮助学生对小学阶段的所学知识进行梳理、查漏补缺,培养学生良好的自主学习习惯,养成学生对学习、对生活、对人生良好的情感态度。不是为了应付考试,不恰当地提出教师自己的教学目标。我们常常听到老师发出这样的感叹:学生太粗心了!许多题目连中下等生都应该做得起来,可练习考试的时候学生错误的情况很多。即出现所谓的“过失”失分现象。学生产生“过失”失分的原因是多方面的。有智力方面的因素,也有非智力方面的因素,但不能原因简单地归究为“学生粗心”。就教师本身而言,教学中,在注意激发学生学习兴趣,培养学生良好的“情感、态度、价值观”的同时,要注重学生的自主学习习惯。在数学课堂教学中对课本的基础知识、基本概念,我们教师要舍得花时间,引导学生自己去探索,去实践,让学生主动参与知识形成的过程。只有帮助学生夯实了基础知识,提高学生解决实际问题的能力才能落到实处,“知识与技能,过程与方法,情感、态度、价值观”三维目标的统一才不至于是一句空话。
二、用好现有教材,提高教学效率,培养自主探究的意识与能力
现行“九义”小学数学教材已形成一个较为完整的知识体系。如何充分发挥现行六年级数学现有教材的作用,体现创意法教育的理念,提高教学效率呢?实践证明,通过改编例题、习题,引导学生思考、辨析,可以起到事半功倍之效。
(一改编例题促思考,引导学生自主探究。
要引导学生“自主探究、合作学习”。六年级学生已具备了一定的自学能力,教学中,教师要根据教学的实际,通过改编例题、习题等方式,引导学生自主探究,在学生掌握新知的同时,又提高了学生应用知识和解决问题的能力。如:在分数乘整数这一部分,教材在讲解了分数乘整数的意义和计算法则以后,补充了一例,说明“好约分的先约分再乘比较方便”。可以在教学中不受教材的限制。可在学生掌握分数乘整数的计算方法、并进行了一定练习以后,出示下面一道题:2/9999×7777,激发学生兴趣说:看哪位同学计算得又对又快。当学生觉得2与7777相乘比较麻烦时,可以点拨到:看题中的数字有什么特点,怎样算比较简便呢?许多学生通过思考,恍然大悟,自觉地运用了先将7777与9999约分,然后,再把7和2相乘除以9的方法。学生通过自主探究,得出了分数和整数相乘,先约分再乘比较简便这样一个结论,这比告诉学生一个简单的方法让他们单纯地做计算效果好得多。
(二改编例题引发散,培养学生能力。
要培养学生用所学知识解决实际问题的能力,在六年级数学教学中,如果能真正把“用教材教”落实到实处,通过改编例题、习题的方式发散学生的思维,对培养学生分析问题和解决问题的能力将会起到积极的作用。如在教学“一段公路,甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完成?”这一工程问题时,在学生掌握了此道题解题思路和方法的基础上,可以将“乙队单独修15天完成”改成:1.乙队单独修比甲队多用5天。2.乙队单独修的时间是甲队的1.5倍。3.乙队的工作效率是甲队的2/3。还可将问题改为:1.两队合修几天完成这段公路的?2.两队合修几天后还剩这段路的?3.甲独修2天后,剩下的乙独修还需几天?这样围绕例题这一中心发散,例题的作用得到充分的发挥。“源于教材,高于教材”的教学机制,在本堂课得到充分体现。
(三改编例题促思辨,提高反思能力。
反思是一种学习和生活的策略。学生在学习新知的过程中总会发生这样那样的错误。教学中,如能适时地运用改编例题、习题促进学生进行思考、辨析,进行前馈控制或反馈矫正,一方面可以达到有效防治错误的目的,另一方面还可以提高学生自我反思的能力。
1.前馈控制。即教师根据教学规律或班级的实际情况,将学生在解答有关问题时易错的一些情况,通过改编例题、习题的方式让学生进行对比、辨析,防患于未然。
2.反馈矫正。即当学生在练习中发生错误后,教师根据学生的情况,通过改编例题或习题让学生继续练习,学生在继续练习中产生顿悟,从而有效地纠正学生的错误认识,提高反思能力。
三、抓住典型题材,发展学生思维,培养学生的数感与直觉思维能力
发展学生的思维,要落实在具体的课堂教学之中,六年级数学教学也是如此。教学中,教师如能抓住一些典型题型,分层递进,对发展学生的思维,培养学生的数感将是十分有益的。
如在讲解型如:“一个三角形三个内角度数的比是3∶2∶1,按角分这个三角形是角的三角形。”这一类题时,通过分层递进,既引导学生自己解决了问题,又发展了学生的思维,耐人寻味。
第一层次:求出三个内角判断法。这是学生开始时常用的方法。第二层次:求一个角判断法。“我们能不能只求出一个角就能判断出这个三角形是什么角的三角形呢?”学生通过思考懂得:只要求出的角,因为的角是90°,所以这个三角是直角三角形。这一层次比第一层次学生思维上进了一层。
第三层次:直接判断法。“我们能不能不求出任何一个角,直接从三个角的比份上判断这个三角形是什么角的三角形呢?”一石激起千层浪,学生的思维一下子被调动起来。通过讨论,学生懂得:因为3=2+1,的角的度数等于其他两个锐角的和,所以可以判断这个三角形是直角三角形。在此基础上,教师又引导学生总结出:
1.如果角的比份等于其他两个角的比份之和,则这个三角形为直角三角形。
2.如果角的比份大于其他两个角的比份之和,则这个三角形为钝角三角形。
3.如果角的比份小于其他两个角的比份之和,则这个三角形为锐角三角形。
学生的思维,在本堂课得到充分发展,培养学生的数感得到落实,课堂教学取得较好的效果。
四、随机进行复习,完善知识结构,创设学生终身发展的空间与平台
六年级教学的难点之一,在于最后复习阶段,学生知识遗忘、缺陷较多,知识的综合更成问题。如何来解决这一难题呢?“寓复习于六年级平时的教学之中,帮助学生逐步完善知识结构”是许多老师的'经验之谈,也是解决这一问题的良方妙药。只有这样,减轻学生过重课业负担,提高教学质量,促进学生发展才不至于是一句空话。
总之,用创意法教育理论去指导六年级数学教学,在课堂教学中创造新意去激发学生学好数学将显得更重要。为了学生的可持续发展,用创意法教育理念指导六年级数学教学也是摆在我们全体六年级老师面前的一个非常重要的现实问题。
我所看的这本书是由人民教育出版社XX年2月出版的《中学数学教学论》一书。
书中论述了中学数学课程目标、课程内容、中学数学学习过程、教学过程与方法、教学手段、教学组织、教学评价等诸多方面,对中学数学教师的教学有很大的指导意义。它有一个特点,就是本书的作者结合了现在的新课程标准以及新教材进行分析,做到理论与当今教材相结合,读后获益匪浅。
介绍了中学数学概念教学、计算教学、几何问题及其教学,尤其是其中关于计算教学的论述使我对中学数学中计算教学的理解提高了一个层次,书中谈到“计算更多的是一种内隐的心智活动”。下面我就结合书中的一些的观点并结合我在计算教学中的一些体验,谈谈我对计算教学的一个新的认识,即:应关注计算教学中思维能力的培养。
很多教师在计算教学中都喜欢采用操作的方法,本来结合操作让学生理解算理无可厚非。根据学生的思维特点,算法的建构离不开操作的直观感知来获取算理,但并不意味着有了操作就可以理解算理、建构算法。事实上动手操作所获取的只是对算理的直观感知,迫切需要教师通过有效引导来搭建平台,帮助学生进一步内化整理,以便沟通算理与算法之间的内在联系。也就是说:操作不能停留在对结果的追求和对算理的理解上,还应及时概括和提炼出算法。教师在学生操作之后引导学生用语言表述出操作过程,帮助学生实现“实物操作”向“算法操作”过度,让学生体验从直观到抽象的逐渐演变过程,逐步摆脱对操作的依赖,从而促使学生抽象思维能力的发展。把操作活动与知识教学紧密联系起来,帮助学生把抽象的思维外显为直观的操作活动,学生的思维由动作到半动作半表象,再到表象思维,最后到抽象思维,由易到难,循序渐进拾阶而上不断深入。
另外,课堂上让学生充分操作,在操作中充分理解算理,这就为抽象出算法储备了丰富的感性认识和感性经验,为算法建构提供了有力支撑。在此基础上,再展开分析、比较、综合、概括,将学生零散的经验和认识进行整理、汇聚,帮助学生将认识进一步明晰化、系统化,从而自然地促进算法的建构。
如果仅停留在操作层面,不能让学生在头脑中对获得的感性经验进行必要的重构,而让仍沉浸在直观形象算理中的学生运用抽象的算法进行计算,则欲速而不达,不利于算法建构。
书中提到:要用综合的思维方式对数的运算结构教学进行整体改革,即融口算、笔算、估算和简算为一体。我想,在教学此类知识时,在思维方法上,应该突破原有的单一凝固的某种算法前提下的教学格局,不是用简单的“加法”,而要用综合的方法来关注和处理单一打破后出现的复杂的多维变化的信息,通过价值判断和结构化的处理,形成有核心的丰富的统一。这才是融合以后形成的“多”与“一”的统一。新形成是的“一”不是“单一”,而是有“主”有“从”、有“层次”、是多方面的和谐统一。这种融合可以唤醒学生灵活判断与主动选择的自觉意识,意味着学生的思维有了更大的空间,是一个更深层次的灵活主动。这才是计算教学深层次的教育价值。
总之,这本书对我而言在教学方面非常有帮助,可以大大地提高我对中学数学新课程改革的认识,让我可以学到很多新理念,并尝试着运用课堂教学中,理论与实际相结合地去摸索经历,从而获得宝贵的教学经验和教学成果。
生活中,数学无处不在。建高楼要画几何图,发射火箭要经过无数的计算。
我们一般加减乘除都是由0~9十个数字构成的十进制的算是组成的,而电脑里却用了二进制。
我一直都想不明白,直到我做了这道题目:小明有511块糖,分别放在9个盒子里。你只要告诉他糖的块数,(不多于511,他就可将几个盒子里的糖全部拿出,凑成你要的块数,这几个盒子里各有多少块糖?
我有些丈二和尚摸不着头脑,怎样也想不出来。我只好一个一个排,排了5个后,我发现是一个很有规律的数列:1.2.4.8.16.都是这个数乘2得到下一个数的。我照着排下去:1.2.4.8.16.32.64.128.256,刚好为511,原来电脑里面有二进制是因为可以算出所有数呀!
我有看到了一种问题-----“牛吃草”。一牧场上的青草匀速的生长,可供27头牛吃6天,工23头牛吃9天,18头牛吃了6天后增加了12头牛,还要几天吃完?牛吃草有原有量和增长量,一部分牛吃原来就有的草,一部分牛吃长出来的草,吃增长量的牛无论什么时候都有的吃,而吃原有量的牛吃完了就没有了,所以应先求原有量和增长量,27×=162(份,(将牛一天吃的草视为一份,23*9=207(份,207-162&pide;(9-6=15(份,增长量为15份,162-6×15=72(份,原有量为72份,18头牛吃6天,共吃72-(18-15×6=54(份草,54&pide;(3+12=3.6(天,答:还要3.6天吃完。
书上也是可以获得知识的。书的页码也有学问。如:甲.乙两册书用了8642个数码,且甲册比乙册多20页,甲书有多少页?首先要知道1~页要1×9=9(个数码,10~9需要2×90=180(个数码,100~999需要2700个数码,(2700+180+9×2 8642个,所以甲乙书都印到了四位数。20页有20×4=80(个数码,甲书有(86742+80&pide;2=4361(个数码,4361-(9+180+270=1472(个数码,1472&pide;4=368(页,999+368=1367(页,答:甲书有1367页。
生活中,数学真是无处不在……
© 2022 xuexicn.net,All Rights Reserved.