最近读《数学思维与小学数学》(郑毓信著),感触颇深。书中讲到:小学数学,特别是低年级数学教学的一个特殊之处:我们应以数学为素材,也即通过具体数学知识的教学帮助学生学会抽象、类比等一般的思维方法,同时又应当帮助学生超越一般思维走向数学思维,也即初步的领悟到数学思维的特殊性,从而就能在“学会数学的思维”这一方向上迈出坚实的第一步。只有通过深入的揭示隐藏在数学知识内容背后的思维方法,我们才能真正的做到将数学课“讲活”、“讲懂”、“ 讲深”。这就是指,教师应通过自己的教学活动向学生展现“活生生的”数学研究工作,而不是死的数学知识;教师并应帮助学生真正理解有关的教学内容,而不是囫囵吞枣,死记硬背;教师在教学中又不仅使学生掌握具体的数学知识,而且也应帮助学生深入领会并逐渐掌握内在的思维方法。
小学生学习数学,是在基本知识的掌握过程中,不断形成数学能力、数学素养,获取多角度思考和看待问题的方法,从而“数学的”思考和解决问题。基本知识的掌握是途径,多角度的思维方式的获取才是最终目的。法国教育家第斯多惠说:“一个不好的教师奉送真理,一个好的教师则教人发现真理。”学生学习数学是一种活动,一种经历,一个过程,活动和过程是不能告诉的,只能参与和体验。因此,教师要改变以书本知识、教学为中心,以教师传递、学生接受的学习方式,把学习的主动权教给学生使学生在操作体验中获得对知识的真实感受,这是学生形成正确认识,并转化为能力的原动力。正如华盛顿儿童博物馆墙上醒目的格言:“做过的,浃髓沦肌。”
平日的教学中,面对教师的提问,若是简单的问题,回应的学生比较多,一旦遇上思考性强、有深度的问题就只有个别同学试探性地举起自己的手,多数同学选择沉默,更有甚者,有时教室里鸦雀无声,真的,学生连大气都不敢出.........这是我教四年级上课提问时的情景,每到这时,我的心就开始颤动,课间时还满脸兴奋的孩子怎么到课堂提问时就这幅摸样,我开始寻找答案,原因是他们缺乏思考,日复一日,年复一年,他们的思考能力几乎丧失了。学生的思考来源于何处?答案是老师的启迪和培养。我们做教师的往往都把主要力量用到让学生掌握现成的东西,死记硬背,久而久之,学生从不用思考,慢慢发展到不会思考,最后遇到问题也就不愿意思考了,这就会发生以上的情景。
我们教师在课堂上应做两件事:一, 要教给学生一定范围的知识,二要使学生变得越来越聪明。而我们不少教师往往忽视了第二点,认为学生掌握了知识自然就聪明,其实不然,一个好奇的爱专研的和勤奋的学生才是真正意义上的聪明学生。那么这种聪明在于教师的启迪和培养。现在的课堂重视小组合作学习,重视学生动手操作能力,其实这些做法都是在培养学生的思考能力。
今年我带四年级数学,除了每周一节的数学思维训练课外,平时的教学中鼓励和适时引导学生积极、主动的参与知识形成的全过程,并为他们的探究活动创设广阔的思维背景,力求做到:“学生能够独立思考的,教师绝不提示;学生能够独立操作的,教师绝不示范;学生能够独立解决的,教师绝不替代。”这样做我觉得对启发他们的思考有一点作用,有时候我也会泄气,因为学生的答案往往和题
目一点关系都没有,我在努力的坚持着.......在我们忙着应付各种考试的时候,请留一点时间让孩子思考。
数学教学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程。教师是学生数学活动的组织者、引导者与参与者,是学生数学智慧的启迪者。智慧的教师眼中,不能只关注学生是否掌握了某个知识,而更应该关注整个教学过程对学生成长的意义以及对学生人生的影响。做一名智慧型教师,着眼于未来,启迪学生思维,培养学生数学智慧,让学生学会学习,促进终身发展。
为了学游泳,我认了。可是用那小小的尺子一点一点的测量着客厅的长,而且要在5分钟内测出面积,真的好难!哥哥在一边幸灾乐祸的说:小弟啊,五分钟可是很快的'呀。
我心里真是又气又急,这一急可真急出办法了,我想起老师教过我们的步测的方法。于是我就用步测的方法去测量,我沿着客厅的长来回走了三次,分别走了8步、10步、9步,这样平均一下,客厅的长就是9步,我用同样的方法测出宽是7步,然后我再用小尺测量了一下自己一步的长度,我也反复测了三次,求出平均值为60厘米。这下我就求出了客厅的长是960=540厘米=5。4米,宽为760=420厘米=4。2米,现在客厅的长和宽都知道了,那么客厅的面积就是:5。44。2=22。68平方米。
我把自己的思考过程和结果告诉了哥哥,哥哥很吃惊的看着我说:小弟,你还真行啊,咱们客厅的面积是24平方米,你算得基本正确,最主要是你能想出这样的方法来,真是了不起!
我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。
今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。
这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。……
从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。
做了这道题,我知道做数奥不能求快,要求懂它的方法。
创意法教育实质就是在课堂教学中创造新意,充分体现学生的主体性,让学生成为课堂教学的主人。为了使学生更能自主地学习,用创意法教育理念上好六年级数学课,显得尤其重要。归纳有如下几点:
一、出示学习目标,落实基础知识,实现“三维目标”的统一
创意法教育课堂教学的目标是指学生自己学习目标,不是教师的教学目标,它包含“知识与技能,过程与方法,情感、态度、价值观”这三维目标的统一。六年级数学教学,一方面要完成本年级新知传授,另一方面,还要帮助学生对小学阶段的所学知识进行梳理、查漏补缺,培养学生良好的自主学习习惯,养成学生对学习、对生活、对人生良好的情感态度。不是为了应付考试,不恰当地提出教师自己的教学目标。我们常常听到老师发出这样的感叹:学生太粗心了!许多题目连中下等生都应该做得起来,可练习考试的时候学生错误的情况很多。即出现所谓的“过失”失分现象。学生产生“过失”失分的原因是多方面的。有智力方面的因素,也有非智力方面的因素,但不能原因简单地归究为“学生粗心”。就教师本身而言,教学中,在注意激发学生学习兴趣,培养学生良好的“情感、态度、价值观”的同时,要注重学生的自主学习习惯。在数学课堂教学中对课本的基础知识、基本概念,我们教师要舍得花时间,引导学生自己去探索,去实践,让学生主动参与知识形成的过程。只有帮助学生夯实了基础知识,提高学生解决实际问题的能力才能落到实处,“知识与技能,过程与方法,情感、态度、价值观”三维目标的统一才不至于是一句空话。
二、用好现有教材,提高教学效率,培养自主探究的意识与能力
现行“九义”小学数学教材已形成一个较为完整的知识体系。如何充分发挥现行六年级数学现有教材的作用,体现创意法教育的理念,提高教学效率呢?实践证明,通过改编例题、习题,引导学生思考、辨析,可以起到事半功倍之效。
(一改编例题促思考,引导学生自主探究。
要引导学生“自主探究、合作学习”。六年级学生已具备了一定的自学能力,教学中,教师要根据教学的实际,通过改编例题、习题等方式,引导学生自主探究,在学生掌握新知的同时,又提高了学生应用知识和解决问题的能力。如:在分数乘整数这一部分,教材在讲解了分数乘整数的意义和计算法则以后,补充了一例,说明“好约分的先约分再乘比较方便”。可以在教学中不受教材的限制。可在学生掌握分数乘整数的计算方法、并进行了一定练习以后,出示下面一道题:2/9999×7777,激发学生兴趣说:看哪位同学计算得又对又快。当学生觉得2与7777相乘比较麻烦时,可以点拨到:看题中的数字有什么特点,怎样算比较简便呢?许多学生通过思考,恍然大悟,自觉地运用了先将7777与9999约分,然后,再把7和2相乘除以9的方法。学生通过自主探究,得出了分数和整数相乘,先约分再乘比较简便这样一个结论,这比告诉学生一个简单的方法让他们单纯地做计算效果好得多。
(二改编例题引发散,培养学生能力。
要培养学生用所学知识解决实际问题的能力,在六年级数学教学中,如果能真正把“用教材教”落实到实处,通过改编例题、习题的方式发散学生的思维,对培养学生分析问题和解决问题的能力将会起到积极的作用。如在教学“一段公路,甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完成?”这一工程问题时,在学生掌握了此道题解题思路和方法的基础上,可以将“乙队单独修15天完成”改成:1.乙队单独修比甲队多用5天。2.乙队单独修的时间是甲队的1.5倍。3.乙队的工作效率是甲队的2/3。还可将问题改为:1.两队合修几天完成这段公路的?2.两队合修几天后还剩这段路的?3.甲独修2天后,剩下的乙独修还需几天?这样围绕例题这一中心发散,例题的作用得到充分的发挥。“源于教材,高于教材”的教学机制,在本堂课得到充分体现。
(三改编例题促思辨,提高反思能力。
反思是一种学习和生活的策略。学生在学习新知的过程中总会发生这样那样的错误。教学中,如能适时地运用改编例题、习题促进学生进行思考、辨析,进行前馈控制或反馈矫正,一方面可以达到有效防治错误的目的,另一方面还可以提高学生自我反思的能力。
1.前馈控制。即教师根据教学规律或班级的实际情况,将学生在解答有关问题时易错的一些情况,通过改编例题、习题的方式让学生进行对比、辨析,防患于未然。
2.反馈矫正。即当学生在练习中发生错误后,教师根据学生的情况,通过改编例题或习题让学生继续练习,学生在继续练习中产生顿悟,从而有效地纠正学生的错误认识,提高反思能力。
三、抓住典型题材,发展学生思维,培养学生的数感与直觉思维能力
发展学生的思维,要落实在具体的课堂教学之中,六年级数学教学也是如此。教学中,教师如能抓住一些典型题型,分层递进,对发展学生的思维,培养学生的数感将是十分有益的。
如在讲解型如:“一个三角形三个内角度数的比是3∶2∶1,按角分这个三角形是角的三角形。”这一类题时,通过分层递进,既引导学生自己解决了问题,又发展了学生的思维,耐人寻味。
第一层次:求出三个内角判断法。这是学生开始时常用的方法。第二层次:求一个角判断法。“我们能不能只求出一个角就能判断出这个三角形是什么角的三角形呢?”学生通过思考懂得:只要求出的角,因为的角是90°,所以这个三角是直角三角形。这一层次比第一层次学生思维上进了一层。
第三层次:直接判断法。“我们能不能不求出任何一个角,直接从三个角的比份上判断这个三角形是什么角的三角形呢?”一石激起千层浪,学生的思维一下子被调动起来。通过讨论,学生懂得:因为3=2+1,的角的度数等于其他两个锐角的和,所以可以判断这个三角形是直角三角形。在此基础上,教师又引导学生总结出:
1.如果角的比份等于其他两个角的比份之和,则这个三角形为直角三角形。
2.如果角的比份大于其他两个角的比份之和,则这个三角形为钝角三角形。
3.如果角的比份小于其他两个角的比份之和,则这个三角形为锐角三角形。
学生的思维,在本堂课得到充分发展,培养学生的数感得到落实,课堂教学取得较好的效果。
四、随机进行复习,完善知识结构,创设学生终身发展的空间与平台
六年级教学的难点之一,在于最后复习阶段,学生知识遗忘、缺陷较多,知识的综合更成问题。如何来解决这一难题呢?“寓复习于六年级平时的教学之中,帮助学生逐步完善知识结构”是许多老师的'经验之谈,也是解决这一问题的良方妙药。只有这样,减轻学生过重课业负担,提高教学质量,促进学生发展才不至于是一句空话。
总之,用创意法教育理论去指导六年级数学教学,在课堂教学中创造新意去激发学生学好数学将显得更重要。为了学生的可持续发展,用创意法教育理念指导六年级数学教学也是摆在我们全体六年级老师面前的一个非常重要的现实问题。
我所看的这本书是由人民教育出版社XX年2月出版的《中学数学教学论》一书。
书中论述了中学数学课程目标、课程内容、中学数学学习过程、教学过程与方法、教学手段、教学组织、教学评价等诸多方面,对中学数学教师的教学有很大的指导意义。它有一个特点,就是本书的作者结合了现在的新课程标准以及新教材进行分析,做到理论与当今教材相结合,读后获益匪浅。
介绍了中学数学概念教学、计算教学、几何问题及其教学,尤其是其中关于计算教学的论述使我对中学数学中计算教学的理解提高了一个层次,书中谈到“计算更多的是一种内隐的心智活动”。下面我就结合书中的一些的观点并结合我在计算教学中的一些体验,谈谈我对计算教学的一个新的认识,即:应关注计算教学中思维能力的培养。
很多教师在计算教学中都喜欢采用操作的方法,本来结合操作让学生理解算理无可厚非。根据学生的思维特点,算法的建构离不开操作的直观感知来获取算理,但并不意味着有了操作就可以理解算理、建构算法。事实上动手操作所获取的只是对算理的直观感知,迫切需要教师通过有效引导来搭建平台,帮助学生进一步内化整理,以便沟通算理与算法之间的内在联系。也就是说:操作不能停留在对结果的追求和对算理的理解上,还应及时概括和提炼出算法。教师在学生操作之后引导学生用语言表述出操作过程,帮助学生实现“实物操作”向“算法操作”过度,让学生体验从直观到抽象的逐渐演变过程,逐步摆脱对操作的依赖,从而促使学生抽象思维能力的发展。把操作活动与知识教学紧密联系起来,帮助学生把抽象的思维外显为直观的操作活动,学生的思维由动作到半动作半表象,再到表象思维,最后到抽象思维,由易到难,循序渐进拾阶而上不断深入。
另外,课堂上让学生充分操作,在操作中充分理解算理,这就为抽象出算法储备了丰富的感性认识和感性经验,为算法建构提供了有力支撑。在此基础上,再展开分析、比较、综合、概括,将学生零散的经验和认识进行整理、汇聚,帮助学生将认识进一步明晰化、系统化,从而自然地促进算法的建构。
如果仅停留在操作层面,不能让学生在头脑中对获得的感性经验进行必要的重构,而让仍沉浸在直观形象算理中的学生运用抽象的算法进行计算,则欲速而不达,不利于算法建构。
书中提到:要用综合的思维方式对数的运算结构教学进行整体改革,即融口算、笔算、估算和简算为一体。我想,在教学此类知识时,在思维方法上,应该突破原有的单一凝固的某种算法前提下的教学格局,不是用简单的“加法”,而要用综合的方法来关注和处理单一打破后出现的复杂的多维变化的信息,通过价值判断和结构化的处理,形成有核心的丰富的统一。这才是融合以后形成的“多”与“一”的统一。新形成是的“一”不是“单一”,而是有“主”有“从”、有“层次”、是多方面的和谐统一。这种融合可以唤醒学生灵活判断与主动选择的自觉意识,意味着学生的思维有了更大的空间,是一个更深层次的灵活主动。这才是计算教学深层次的教育价值。
总之,这本书对我而言在教学方面非常有帮助,可以大大地提高我对中学数学新课程改革的认识,让我可以学到很多新理念,并尝试着运用课堂教学中,理论与实际相结合地去摸索经历,从而获得宝贵的教学经验和教学成果。
© 2022 xuexicn.net,All Rights Reserved.