实数分有理数和无理数,有理数可用既约分数的形式表示,而无理数则不能用一个确定式表示。人们先发现有理数,再运用dedekind分割划分出一些不属于有理数的数。全部这些数的集合就是实数集。用同样的方法分割,却得不到非实数,这证明了实数具有完备性。
关于实数完备性有一些基本定理,如:区间套定理、柯西收敛准则、聚点定理和有限覆盖定理。对于任何一个包含于实数集的集合,还有著名的确界原理。函数的定义是一个具有某种结构的集合到一个数集的对应关系。有基本函数和特殊的`函数,如:符号函数、heaviside函数、riemann函数和dirichelet函数。
首段以开门见山式为佳,这种形式简洁明了,便于直接切入主题,三言五语就话题表明自己的观点态度,可以有效地避免因表述绕弯多造成表意不清甚至跑题的情况发生。末段显志,应对照首段观点,呼应首段,强化议论效果,显现文章的整体性。另外,无论是首尾段,还是首尾句,都应出现话题中的关键词,这样既有益于围绕话题展开,又能突出中心,使阅卷人对行文内容一目了然。做到以上几点,一般情况下,作文就能够紧扣话题,明确表达中心了。
函数在某一点x。连续的定义是在x。的某邻域内有定义且满足当x趋于x。时,函数f(x)趋于f(x。)。而在某区间上的连续可由在某点推广。对一闭区间上连续的函数有一些性质,如:有界性、最值、介值性和一致连续性。对于函数连续性,重在理解定义的内容。
经过一个半学期的《数学分析》的经过一个半学期的《数学分析》的学习,我基本上对其学习方法有了一定的掌握。了解到《数学分析》与高中的数学既有联系又有差别。一方面在许多思想与分析中运用了高中数学的基础知识;另一方面它将许多东西细微化,一步步探究深层次的东西。它使我们对许多东西有了进一步的了解而不是只停留在理解表面。下面对我目前已学习的知识进行理解与分析:
对于极限,重在理解它的定义。函数极限是数列极限的推广,所以理解了数列极限,函数极限问题就不大了。收敛的数列有许多特殊性质,如:有界性、唯一性、保号保序性和迫敛性,且满足线性组合运算。既然有这么多很好的性质,我们就想弄清哪些数列收敛或收敛数列需满足的条件。人们发现,单调有界数列和满足柯西收敛准则的数列一定有极限。
© 2022 xuexicn.net,All Rights Reserved.