1、复习小数的性质。
(1提问:小数的性质是什么?(板书小数的性质谁能举例说明小数的性质?学习小数的性质有什么应用?
(2做练一练第1题。
让学生先写出各数,然后指名回答,老师板书。
(3做练习十一第7题。
出示卡片指名口答。 追问:为什么20末尾的0不能去掉?0.020里小数点后面的。去掉,会改变小数大小吗?为什么?
2、复习小数点移动引起小数大小变化的规律。
(1提问:移动小数点的位置,小数大小会发生怎样的变化?(板书:小数点右移一位、两位、三位小数分别扩大10倍、100倍、1000倍左移一位、两位、三位小数分别缩小10倍、100倍、1000倍
(2做练一练第2题。
让学生观察每组数的排列,然后指名口答。追问:如果把一个数扩大或者缩小10倍、100倍、1000倍怎样移动小数点?
(3做练练第3题。
让学生在练习本上依次写出各题得数,然后指名口答结果,老师板书。
(4做练习十一第8题。
小黑板出示。指名一人板演,其余学生做在课本上。集体订正。
在初中阶段,学生们将要学习到一次函数、二次函数、反比例函数等有关函数的知识。函数是初中代数的主要内容,研究了“变化过程中变量之间的关系”,除此之外,函数还是串联整个初中代数课程内容的一个重要脉络。比如:代数式求值的问题可以视为求取函数在某个特定自变量时的函数值;方程可以看成是相应函数在某个特定函数值时的情况;不等式(组)可以看成是相应函数在某个特定函数值范围时的情况。
在函数教学的过程中,老师要让学生了解不同函数之间的联系,函数与其他数学内容之间的实质性联系,因为,在练习的过程中,有很多题目考查的不仅仅是单一的'某一种函数,而是几种函数之间或几个知识点的综合运用。书中提到的《一次函数的图像》是八年级下册的内容。本节课分为2个课时,第一课时是让学生了解函数与对象的对应关系和作函数图像的步骤和方法,明确一次函数的图像是一条直线,能熟练地作出一次函数的图像。第二课时是通过对一次函数图像的比较与归类,探索一次函数及其图像的简单性质。从书中有关《一次函数的图像》案例中可以看出,我们的教学还存在很多的问题。因为我们很多时候仅仅从代数的角度研究函数,通过计算得到函数的性质,让学生能够运用函数的知识解决问题,而案例中的教学过程更强调“代数与几何的交融”借助代数的知识研究几何现象。案例中的这位教师在课堂设计中也充分体现出了“数学源于生活,又高于生活”。
在教学过程中,我们一定要注重知识间的联系,根据教学内容、教学方法和学生的实际情况等进行课堂设计,让每一位学生进行高效学习。
这节课复习了哪些内容?谁来说说小数的性质和小数点移动
引起小数大小变化的规律?怎样把较大的数改写成万或亿作单位的数?怎样写出一个数的近似数?
1、复习数的改写。
(1做练一练第4题。
让学生把第(1、(2题做在课本上。提问第(1题的结果,老师板书。提问:怎样把一个较大的数改写成万或亿作单位的数?为什么要这样改写?提问第(2题的结果,老师板书。提问:怎样写出一个数的近似数?指出:为了读写方便,我们常常把一个多位数改写成万或亿作单位的数。改写时只要在万位或亿位数的右下角点上小数点,并相应地添上万或亿作单位,也就是先把一个数缩小一万倍或一亿倍,再写上万或亿作单位,这样原数的大小不变。有时,根据需要往往要写出一个数的近似数。写近似数一般是看保留位数的后一位,用四舍五人的方法求出近似数,并注意近似数要用约等号。
(2把3.24956保留一位小数、两位小数、三位小数各是多少?
指名一人板演,其余学生做在练习本上。集体订正,要求说明怎样想的。强调保留三位小数时要写出末尾的0,以表示精确度。
2、做练习十一第10题。
让学生做在课本上。小黑板出示第10题,学生口答练习结果,老师板书。注意讲清第(3题怎样想的。追问:0.5万就是多少?0.6万呢?0.38亿呢?
© 2022 xuexicn.net,All Rights Reserved.