有个好心人在海边发现一只小海龟从沙穴里往出爬,这时过来一只老鹰要抓小海龟,游客把小海龟护送到大海,把老鹰赶走。这时一群海龟从沙穴里爬出来,爬向海里,原来这只小海龟是个“侦查兵”。等好心人走后,马上来了一群老鹰。
人们常常说,不要将好事办成坏事,也就是成语所说的弄巧成拙。上面例子中所举的这个好心人就是把事情办砸了的一种。本来,按照动物界的`活动圈,也就是它们各自形成的生活规则和防范方法,小海龟们完全可以自己保护自己,充其量牺牲一只小海龟而已。但是,经过这么一个好心人的帮助,破坏了他们相互形成的默契规则,白白搭上了更多小海龟的生命。
春江水暖鸭先知。动物界、生物界,都会按照自己的方式适应大自然,和大自然中各自链条上的生物相关联的生存发展。蛇吃老鼠,同样,蛇也通过吃掉老鼠为其它老鼠提供更多的粮食来养活老鼠(当然也养活人类),这就是规律。其实,任何事物都有自身发展规律,各自在各自的循环圈内发展循环,以至生命发展循环往复不止。这是达尔文生物圈理论告诉我们的道理。近年来,我们面对发展压力和环境恶化状况,国家也提出了科学发展、和谐发展的理念,说到底就是与大自然和谐相处,因此,各种保护自然、保护环境的声音和举措越来越多。或许,上面的这位好心游客就是正是影响如此号召,心中顿时如此佛性,才做出如此举动的。
找规律是一种十分锻炼人逻辑思维的数理游戏,它千变万化,没有一种固定的模式。有些同学可能讨厌它,认为它很枯燥很无奈,一碰到这样的题就变得抓耳挠腮。但我很喜欢,因为在找规律的过程中不但锻炼了我的观察力、相互联系的能力及逻辑思维能力,我还从中体会到了无穷的乐趣。
其实,我对找规律的喜好,还是从做妈妈给我买的《哈佛给学生做的300个思维游戏》这本书上的.游戏开始的。书中列举了300个思维游戏题,内容丰富,形式活泼,其中有许多找规律的题型。例如:你能找出最后一个数字盘中问号部分应当填入的数字吗?
猛一看三个圆盘中相连的两个数字之间毫无规律可言,这可怎么解呢?别急,慢慢地观察或许不难发现,假若把每个圆盘中相对应的一组数字拿出来比较一下,规律好像就出来了。真的吔,每个圆盘中相对应的一组数字之间都存在相同的倍数,或叫“特定数”。如:
第一个圆盘中:21÷7=3 9÷3=3 15÷5=3 27÷9=3;即第一个圆盘中的特定数就是3。
第二个圆盘中:30÷5=6 24÷4=6 12÷2=6 36÷6=6;即第二个圆盘中的特定数就是6。
好吧,既然第一、第二个圆盘中的规律都是找“特定数”,那么第三个圆盘中相对应的一组数字也应该符合这个规律,即找特定数。从9÷1=9 45÷5=9 27÷3=9 就可得出,第三个圆盘的特定数是9。以此类推,?÷8 = 9 那么 ?= 72
所以,问号部分应当填入数字72。
啊!终于找出来了问号部分的答案了。每当此时,我都无比的激动和兴奋。因为经过苦苦思索后,又猛然间豁然开朗,那种成功的喜悦是任何言语都无法形容的。
就是这样,一次次的苦思觅想,一次次的豁然开朗,使我欲罢不能。慢慢地我喜欢上了这种痛苦并快乐着的找规律游戏,只有亲身经历过的人才能真正体会到其中的乐趣。
通过找规律的游戏,我渐渐地领悟到一个真理:规律是看不见摸不着的,只有深入其中,不断探索,勇于拼搏的人才能真正的找到它。
数学的神奇无处不在,每一个数字、符号都是他的凭证。今天,我也证实了这一点:数学的神奇。
数学课下课后,我无意间发现了一个规律,一个关于平方的规律。我摊开练习本,看见练习本上的密密麻麻的验算过程,突然,一个不起眼的算式引起了我的注意:52-42.这是一个很简单的算式,口算也能算出来:9,而9不正是5+4的和么?我又换了一个式子:62-52,结果是11,11也正是6+5的和。我感到非常惊喜,仿佛发现了新大陆似的,快要疯了。但是好奇的我又想:这是两个相邻的数的平方,那不相邻的可以么?于是我就又列了一个式子:52-32,并且很快的得出了结果:16,这时,我懵了,一时半会儿得不出结论,这令我很沮丧。
忽然,灵光一闪——为什么不从5与3的和或差来考虑呢?5+3=8,5-3=2,8×2=16!16不就是52-32的差么?我又试了试:72-42=49-16=33。(7+4)×(7-4)=11×3=33,结果一样!我是一个固执的人,继续想:既然正数可以,负数同样适用么?比如(-3)2-52=9-25=-16。(-3+5)×(-3-5)=2×(-8)=-16。又是一个奇迹!这会不会是巧合呢?我换了大数试试:20002-19992=4000000-3996001=3999;如果用规律来计算的话,就是:(2000-1999)×(2000+1999)=1×3999=3999。哈哈,果然简便了很多!真是方便!小小的“+”“-”,具有着无穷的魔力,怎么不能说,数学是神奇的呢?
数学的“魔术”一个个被我“揭穿”,做到这一点,已经够了不起了,可我还誓不罢休,又接着算起了立方:43-33=64-27=37;33-23=27-8=19。这下,我可败下了阵,看来,还是“数学”略胜一筹,它再也露不出马脚了,我也甘拜下风。
——上课铃响了,清脆的铃声听起来格外悦耳,好像在庆贺我似的,取得了“破解家”的称号。虽然我还未看透数学,但是我却认识到数学是奇妙无穷的。
数学的神奇无处不在,每一个数字、符号都是他的凭证。今天,我也证实了这一点:数学的神奇。
数学课下课后,我无意间发现了一个规律,一个关于平方的规律。我摊开练习本,看见练习本上的密密麻麻的验算过程,突然,一个不起眼的算式引起了我的注意:52-42.这是一个很简单的算式,口算也能算出来:9,而9不正是5+4的和么?我又换了一个式子:62-52,结果是11,11也正是6+5的和。我感到非常惊喜,仿佛发现了新大陆似的,快要疯了。但是好奇的我又想:这是两个相邻的数的平方,那不相邻的可以么?于是我就又列了一个式子:52-32,并且很快的得出了结果:16,这时,我懵了,一时半会儿得不出结论,这令我很沮丧。
忽然,灵光一闪——为什么不从5与3的和或差来考虑呢?5+3=8,5-3=2,8×2=16!16不就是52-32的差么?我又试了试:72-42=49-16=33。(7+4×(7-4=11×3=33,结果一样!我是一个固执的人,继续想:既然正数可以,负数同样适用么?比如(-32-52=9-25=-16。(-3+5×(-3-5=2×(-8=-16。又是一个奇迹!这会不会是巧合呢?我换了大数试试:20002-19992=4000000-3996001=3999;如果用规律来计算的话,就是:(2000-1999×(2000+1999=1×3999=3999。哈哈,果然简便了很多!真是方便!小小的“+”“-”,具有着无穷的魔力,怎么不能说,数学是神奇的呢?
数学的“魔术”一个个被我“揭穿”,做到这一点,已经够了不起了,可我还誓不罢休,又接着算起了立方:43-33=64-27=37;33-23=27-8=19。这下,我可败下了阵,看来,还是“数学”略胜一筹,它再也露不出马脚了,我也甘拜下风。
——上课铃响了,清脆的铃声听起来格外悦耳,好像在庆贺我似的,取得了“破解家”的称号。虽然我还未看透数学,但是我却认识到数学是奇妙无穷的。
© 2022 xuexicn.net,All Rights Reserved.