在数学教学中有时会遇到这样的尴尬,一方面学生努力的学习数学,一方面却是对数学学习缺乏热情,如何培养学生对数学学习的热情,对数学的感情?我一直在思索着这个问题。课堂教学的三维目标,知识目标、能力目标、情感态度价值观目标,尤其是情感态度价值观目标应放在首位。只有学生从内心深处感受到数学的魅力,数学的美,对数学有着一情感互动,才会真正激发学生的学习动力;而要想学生感受到数学的美,只有教师深入挖掘数学的更深层次的内涵,自己先领悟到数学的美,并不断渗透在教学中,才可能使学生逐步认识到数学的美。偶尔读到一本书《数学家的眼光》深有感触。数学教科书,有不少古今中外数学家的故事,在教学中,这些故事往往被老师忽视掉,认为他们不属于考试的范畴,所在讲课时,基本不讲。但是如果能很好的利用好这些资料,让学生了解这些伟人的生平事迹,以及对科学的痴迷,在研究过程中的不懈努力,遭遇嘲讽时的坚持,对学生的数学兴趣的培养和精神熏陶有着重要意义,了解这些科学家的卓越贡献,对学生也是极好的爱国主义教育。
张景中,是我国著名的数学家,在2005年荣获国家科技进步奖,它写的一部科学书叫《数学家的眼光》,对我们很有启发意义。作为中学数学老师,特别欣赏这本书一口气读完全书,他给人以启迪,使我更加热爱数学这门学科,从而在教学中能渗透一些数学思想,使我人学生更加热爱数学,热爱生活。《数学家的眼光》是张景中院士献给中学生的礼物。在本书的扉页上有数学大师陈省身写给张景中的信,称其为“承寄大作小册,甚为欣赏”,“该书似当译成英文”。再翻看书的目录,有“温故知新”、“巧思妙解”、“正反辉映”、“偏题正做”、“青出于蓝”有五个大专题,下面又分为22个小专题,既有“会说话的图形”、“了不起的密率”、“圈子里的蚂蚁”“椭圆上的蝴蝶”具体的数学问题,又有“相同与不同”、“归纳与演绎”、“精确与误差”、“变化与不变”这样抽象的数学问题。
抚卷深思,深受启发:以前我学数学、教数学,着眼的是数学知识和解题技巧,而张景中着眼的是数学思想和数学思维。数学家的眼光和普通人的眼光就是不同。在平常人看来十分繁难的问题,数学家可能觉得很简单:6只小鸟、6个面包、6张桌子,它们之间有天壤之别,但是对于数学家而言,无非都是一个数字6而已;月饼、铁饼、烧饼,在数学家眼里,无非都是圆,数学家看问题,关心的是数量关系和空间形式,用的是抽象的眼光。这就是学者专家与一般老师的区别。
1980年,陈省身教授在北京大学的一次讲学中对三角形内角和定理作出质疑。他说:“人们常说,三角形内角和等于180°。但是,这是不对的!”
三角形的内角和等于180°这是一个熟知的定理,为什么说它不对呢?陈教授对大家的疑问作了精辟的解答说:“三角形内角和为180°”不对,不是说这个事实不对,而是说这种看问题的方法不对。应当说:“三角形外角和是360°”!
这是为什么呢?因为任意n边形外角和都是360°。把眼光盯住外角,就可以把多种情形用一个十分简单的结论概括起来了;用一个与n无关的常数代替了与n有关的公式,找到了—个更一般的规律。当然也是一个更简单的规律!
由此可见,尽管命题“三角的外角和为360°”和命题“三角的内角和为180°”是等价的,但是在数学家看来,这是不同的!因为在形式上,后者更简单,因此就更美,也就更有价值!事实果真如此,正是这与众不同的眼光,使陈教授抓住了更有价值的内角和,并由此出发,进一步把“多边形内角和等于360°”这个规律推广到闭曲线,推广到空间,进而发展为著名的陈氏类理论,做出了划时代的贡献。
这就是数学家的眼光!在这透彻、犀利的目光中,折射出来的是数学家的价值观和审美观,是数学家的穷追不舍,孜孜以求的探索真理的精神。
数学家的眼光和普通人的不同:在普通人眼中十分复杂的问题,在数学家眼中就变得异常简单;普通人觉得相当简单的问题,数学家可能认为非常复杂。作者张景中院士从我们熟悉的问题入手,通俗生动地介绍了数学家是如何从这些简单的问题中,发现并得出不同凡响的结论的。《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉我们的是思考数学问题的思路和方法,让我们做题更加简便的“捷径”。
数学家的眼光可以从“三角形的内角和是180°”这个众人皆知的数学常识中看到“任意n边形外角和都是360°”,看到“蚂蚁在卵形线上爬一圈,角度改变量之和是360°”,这样的眼光,怎能不让人惊叹!
用圆规画线段﹐一般人立即反应:怎么可能呢?若按照常规思考,我们可能回答:“把圆规当铅笔用,再配合直尺,不就可以画线段了吗?”但是在只能用圆规不能用其它工具,画出绝对的直线段的.情况下,可能就需要思考一下了。想一想,若不拘泥在平面上呢?用一个中空的圆罐子,将纸卷成圆柱状置入,将圆心固定在罐子中央,转动圆规,在罐子内侧的纸上画圆,当纸拿出后,线段便完成了!
鸡兔同笼,数学家的眼光从这个小学的数学问题又能看出什么呢?鸡兔同笼用方程的解法会很简单,但是它除了方程,还可以用最原始的方法去解。有人可能会笑了:有了简便的方法,还用那么笨的方法干什么?但如果倒过来想,用鸡兔同笼的方来做方程的话,那么很难方程不就好解了吗?
数学家的眼光,能从基本的数学常识中看出复杂的理论,能从不可能中看出可能,能从简单的问题中看出那题的解法。在数学家的眼中,最最基础的理论也可以衍伸变化出高深的数学问题。数学的领域是无穷广阔的,真正的关键在于自己,若我们用心观察四周的事物,抓住平凡的事实,思考、探索、发掘,会发现数学是耐人寻味且无所不在的。数学家的眼光从洗衣服中都能看见数学的影子,那么我们也一定能够从其它事情中看到数学,久而久之,就会慢慢理解数学,喜欢上数学。这样,数学就不再是让我们绞尽脑汁去思考的难题,而是生活中处处都有的小精灵。
© 2022 xuexicn.net,All Rights Reserved.