我是个活蹦乱跳的男孩,从来不会去思考一些难的东西。老师给我出了这道难题,让我困惑,也像有一种引力吸引着我,让我想百思之后寻求到谜底。
我家里种着好多盆花,有红的、紫的、白的,各种各样五彩缤纷,看得我眼花缭乱,我东转转西转转,一时半会儿实在很难决定自己最喜欢哪一种。其中有一种最特别,它是我去菜市场买的西瓜吃完了以后种出来的。把一颗最大的西瓜子留下来放在土里,经过我的关心呵护,还有很多次风吹日晒,它终于长出了一点瓜藤,绿绿的。我非常高兴,我的希望是它能又大又肥,西瓜碧绿,那我就真的会非常非常开心了。我就天天盼着它长大,能再长出另一个大西瓜。后来,它真的越长越大,小盆子都装不下了,只能另买一个大花盆来做它的家。我开心得像一朵刚开的喇叭花,笑得合不拢嘴。西瓜一点点长大,我也一点点地收获喜悦。
我叔叔家的那两只乌龟,一只胖得像皮球,另外一只骨瘦如柴,这让我很纳闷——明明是一起养的嘛。后来我专心观察、研究,终于让我打开了一直以来的心结,像心中的老虎被释放了。原来胖的那只又爱吃,又会抢,食物一放进去,它就拼了命的吃,用尽一切办法把食物拖过来,难怪长得那么好!后来,我就故意把食物投放在瘦乌龟那边,可是瘦的那只吃东西总是慢吞吞的,别人都吃完了,它才只吃完一条。于是,胖乌龟还是以迅雷不及掩耳的速度,像飞机一样飞扑过来,又把它的食物抢着吃掉了。也许胖乌龟觉得自己的生命里,食物要比伙伴更重要吧。
还有一次,我在一家文具店看到一种非常漂亮的笔,就马上买了下来,好好地用它。可是有一天我正要用它写字,突然发现它不见了。我慌慌张张,脸色苍白,把书包、铅笔盒、桌子、椅子底下……通通都找遍了,还是不见它的踪影。我心神不宁,别人丢了十支笔,都无所谓;我丢了这支最好用的,就像没了手,什么都不会写,什么知觉都没了,什么都想不起来了!——一片空白!回到家,我又心急地搜遍了整个屋子,还是没找到,沮丧又心痛!后来有一天我躺在地板上伤心,向床下瞅了一眼——一个乌漆抹黑的正在闪烁!我赶紧起身捡起来一看——正是我丢掉的那只笔!我非常高兴,赶紧把它端端正正地放进了铅笔盒——今后,我一定要好好保管你啊!
我发现,大自然中每一样东西都值得我们珍惜,过了这村没这店。一旦过去了,有些朋友就再也找不到,有些感觉就再也挽救不回来了。所以我懂得要从珍惜现在开始,珍惜自然中的每一种宝贵的生命存在。
数学的神奇无处不在,每一个数字、符号都是他的凭证。今天,我也证实了这一点:数学的神奇。
数学课下课后,我无意间发现了一个规律,一个关于平方的规律。我摊开练习本,看见练习本上的密密麻麻的验算过程,突然,一个不起眼的算式引起了我的注意:52-42.这是一个很简单的算式,口算也能算出来:9,而9不正是5+4的和么?我又换了一个式子:62-52,结果是11,11也正是6+5的和。我感到非常惊喜,仿佛发现了新大陆似的,快要疯了。但是好奇的我又想:这是两个相邻的数的平方,那不相邻的可以么?于是我就又列了一个式子:52-32,并且很快的得出了结果:16,这时,我懵了,一时半会儿得不出结论,这令我很沮丧。
忽然,灵光一闪——为什么不从5与3的和或差来考虑呢?5+3=8,5-3=2,8×2=16!16不就是52-32的差么?我又试了试:72-42=49-16=33。(7+4×(7-4=11×3=33,结果一样!我是一个固执的人,继续想:既然正数可以,负数同样适用么?比如(-32-52=9-25=-16。(-3+5×(-3-5=2×(-8=-16。又是一个奇迹!这会不会是巧合呢?我换了大数试试:20002-19992=4000000-3996001=3999;如果用规律来计算的话,就是:(2000-1999×(2000+1999=1×3999=3999。哈哈,果然简便了很多!真是方便!小小的“+”“-”,具有着无穷的魔力,怎么不能说,数学是神奇的呢?
数学的“魔术”一个个被我“揭穿”,做到这一点,已经够了不起了,可我还誓不罢休,又接着算起了立方:43-33=64-27=37;33-23=27-8=19。这下,我可败下了阵,看来,还是“数学”略胜一筹,它再也露不出马脚了,我也甘拜下风。
——上课铃响了,清脆的铃声听起来格外悦耳,好像在庆贺我似的,取得了“破解家”的称号。虽然我还未看透数学,但是我却认识到数学是奇妙无穷的。
有一次,菲菲和蓝猫玩跳格子的游戏,他们跳的格子是这样的:1 2 3 4 5,菲菲把一个沙包抛到第一格,再单脚跳进此格,捡起后回到起点,再抛进第2格,菲菲跳进第一格后再跳进第二格,但跳进第二格时,菲菲踩到线了,所以失败了。蓝猫接着玩,他一下就跳进了第二格,菲菲说它赖皮,不算。刚好洋博士经过这儿,问明情况后,夸它们说:“知道吗?你们玩出了一道有趣的题目。”蓝猫和菲菲很惊讶。
洋博士说:“你们跳格子,每次可以跳一格,也可以跳两格,还可以一格两格断续的跳,但每次最多只可以跳两格,跳完5格共有多少种跳法呢?”
菲菲和蓝猫都认真地想了想后,蓝猫拍着脑门说:“第一格,很显然只有一种跳法。第二格,可以一次跳一格,跳两次;还可以一次跳两格,跳一次;有两种跳法。第三格,可以一格一格的跳,跳三次;还可以先跳一格,再跳两格,跳两次;或者先跳两格,再跳一格,跳两次;有三种跳法。用同样的方法可以推知,跳进第四格有五种跳法,跳进第五格有八种跳法。”洋博士高兴的笑着说:“你们仔细观察跳进每一格的方法数1、2、3、5、8,有没有发现什么规律?”
菲菲回答说:“我知道,我知道,从第三个数起,每个数字是前两个数字的和。”
洋博士说:“对,这其实是一个有趣的数列。想不想听一个关于数列的故事呢?”
蓝猫和菲菲异口同声地说:“当然想,当然想。”
于是洋博士说,意大利比萨的一位绰号为斐波那契的数学家在《算盘书》这本数学著作中,提出了一个问题:兔子出生以后两个月就能生小兔,若每次不多不少恰好生一对(一雌一雄)。假如养了初生的小兔一对,试问一年以后(即第13个月)共可有多少对兔子(如果生下的小兔都不死的话)?
此题的推算方法和跳格子一样,从第三个月起每个月的兔子数是前两个月的兔子数之和。据此推知,一年后,共有233对兔子。以上兔子数构成的数列,现在称之为“兔子数列”。它广泛存在于我们的生活中,只有认真的观察,才能不断地了解生活中的奥秘。
蓝猫和菲菲不约而同地点头称是。
最后蓝猫说,我出两道关于数列的题,请大家一起算一算吧!题目是这样的:
1、4、7、10、( )、16、19、( )、25、28、96、( )、24、12、6、3
比一比,看谁最聪明吧!
© 2022 xuexicn.net,All Rights Reserved.