不定积分和定积分。不定积分是微分的逆运算,它的核心思想是将许多无法解决或难以解决的事物积累成一个整体来解决。不定积分的运算有一些方法,如:换元法和分部积分法。与不定积分不同,定积分则是一个分割t的模趋于零的极限。
对一个闭区间上的函数作划分,求出黎曼和,当分割的模趋于零时,黎曼和趋于一个常数,此时称这个常数为函数在闭区间上的定积分。定积分的运算可运用牛顿—莱布尼茨公式。哪些函数是可积的,可积函数有哪些性质。人们发现了可积函数需满足的条件和它的一些性质,如:积分中值定理。
数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。
4. 大小比较
1. 比较整数大小:比较整数的`大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
我们应用数学系的分析类课程有如下三门:数学分析、复变函数和实变函数。这三门中,以数学分析为基础,同时,它也是大家刚进大学学的第一门数学基础课,所以比较重要,学好它,对日后学习复变函数是大有裨益的。所以我就先从数学分析开始入手介绍。
关于数学分析,大家用的教材想必是华东师大的第三版吧!这套教材总的来说还是不错的,对于我们数学系的学生而言,大家应该首先看透课本,比如一提到某一概念,大家应在脑海中立马反映出它的定义以及与之相关的定理和推论,并且能够知晓定理和推论的证明,这是第一步。
第二步,那就是习题了,习题分为三个部分:文中的习题、课后的横线上的习题和课后横线下的习题。对于社会型或恋爱型或学习型中将来不研究数学的同学,文中的习题和课后的横线上的习题是最好全做,这样就对数学分析的课程有了一个大致的了解,这就足够了;对于学习型中立志于学数学的人来说,那么横线下的题目就得要做了,尽量全做。
大家手头上都有答案,如实在做不出,就看看答案,但切记千万别单纯一味的背答案,要理解的看答案,发掘答案中有没有什么新的技巧和方法,然后将它融会贯通,成为自己的东西。
其实大家在解题目时,就是搜索自己在脑海中储备的解法有没有适于这道题目,如有,此题就迎刃而解;若无,此题就无从下手,所以大家看答案就是应当想着增加自己脑海中解法的储备,从而通过题目来加深对书中概念的理解。
实数分有理数和无理数,有理数可用既约分数的形式表示,而无理数则不能用一个确定式表示。人们先发现有理数,再运用dedekind分割划分出一些不属于有理数的数。全部这些数的集合就是实数集。用同样的方法分割,却得不到非实数,这证明了实数具有完备性。
关于实数完备性有一些基本定理,如:区间套定理、柯西收敛准则、聚点定理和有限覆盖定理。对于任何一个包含于实数集的集合,还有著名的确界原理。函数的定义是一个具有某种结构的集合到一个数集的对应关系。有基本函数和特殊的`函数,如:符号函数、heaviside函数、riemann函数和dirichelet函数。
首段以开门见山式为佳,这种形式简洁明了,便于直接切入主题,三言五语就话题表明自己的观点态度,可以有效地避免因表述绕弯多造成表意不清甚至跑题的情况发生。末段显志,应对照首段观点,呼应首段,强化议论效果,显现文章的整体性。另外,无论是首尾段,还是首尾句,都应出现话题中的关键词,这样既有益于围绕话题展开,又能突出中心,使阅卷人对行文内容一目了然。做到以上几点,一般情况下,作文就能够紧扣话题,明确表达中心了。
© 2022 xuexicn.net,All Rights Reserved.