在教学亿以内数的改写时,我先让学生自己独立完成,然后集***流,并让学生总结亿以内数的改写方法,一个孩子说:“把各级的四个零去掉改写成万字”。我及时表扬并强调顺利的完成了这个教学环节。这个环节充分体现了学生是学习的主人,教师是引导者、合作者这一新课程理念。
本节课的不足之处是在教学例6时没有体现学生的主体地位。亿以内数的省略是本节课教学的难点,为了突破难点,在这个环节我先出示了课本上的例6,地球的直径大约是多少万千米?太阳的呢?出示地球和太阳的图片让学生观察,我怕学生不会就一步一步的引导,问题是地球的直径是多少万千米就是让省略万位后面的尾数求近似数,省略万位后面的尾数要看哪一位上的数?在我的引导下学生虽然程度好的同学掌握了方法,但是在学习程度不太好的同学却似懂非懂。反思这个环节的教学,我觉得主要是没有发挥学生的主体作用,应让学生先尝试完成,在集***流订正,这样教师在巡视时可以把错的和正确的都板书在黑板上让学生去判断讲解,虽然有点浪费时间,但是一定会比我的这种方法效果好。
学生发现这些数据计量单位不同,很难一下就排好队。如果单位相同的话,就能很快排好队。于是我采取小组合作的讨论形式,让学生展开交流如何把 80 厘米化为( )米,学生发现这道题也就是将单名数改写成小数,同时学生通过讨论还发现了两种改写方法:一种是直接利用计量单位的关系,另一种是利用低级单位改写成高级单位的数要除以进率,再联系小数点位置移动引起小数大小变化的规律。大多数学生采取的是第二种方法,其实这两种方法都是可取的,这时应鼓励学生无论用哪种方法,只要方法正确,都是可以的,这里我应该强调一下。
一个较大的多位数,为了读写方便,常常把它改写成用”万”或”亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。
2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。
3.四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。
4.大小比较
1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2.比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的.,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
3.比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
以上就是为大家整理的数和数的运算方法,希望对小朋友们有所启发!
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。
4. 大小比较
1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2. 比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
1、学习例9。
出示例9:地球和太阳之间的平均距离大约是1.496亿千米。(1)精确到十分位是多少亿千米?(2)精确到百分位是多少亿千米?
(1)讨论第一个问题
依次说说:精确到十分位要保留几位小数?要看小数的哪一位?怎样确定近似数?
明确:
①精确到十分位就是要保留一位小数,只要看百分位上的数。百分位上的“9”大于5,所以向十分位进1。
②得到的1.5是近似数,所以要用连接。
(2)讨论第二个问题
让学生回答后说说是怎么想的,再次强调得数用“≈”连接。
(3)思考讨论:
比较近似数1.5和1.50,哪一个更精确一些?近似数1.50末尾的“0”能去掉吗?为什么?
引导学生结合例题中取近似数的过程说说体会。
明确:
1.5是精确到十分位的结果,而1.50是精确到百分位的结果。所以1.50要比1.5更精确一些,正因为如此,所以近似数1.50末尾的“0”是不能去掉的。
2、“试一试”
学生独立完成,集***流,说说是怎么想的。
3、归纳方法:
问:通过刚才的学习,你觉得怎样求一个小数的近似数?要注意些什么?
*明确:
(1)先要弄清楚保留几位小数;(2)根据要求确定看哪一位上的数;(3)用“四舍五入”的方法求得结果。
*强调:要正确使用“≈”。
三、巩固练习:
1、练一练/1,独立完成。
强调:把2.962精确到十分位时,不能丢掉结果末尾的“0”。
2、练一练/2,出示
(1)指导学生审题。明确题目的两个要求。先改写再求近似数。
(2)学生在书上完成。指名板演。
(3)集***流,分别说说改写的`方法和求似数的方法。
想想:为什么前面用“=”,后面用“≈”。
(4)把改写后的小数和求出的近似数分别放入原来的语言环境中读一读,比一比,再说说自己的感受,体会用“万”作单位的小数及其近似数的应用价值。
3、练习七/4。
出示,指名板演,其余独立完成。
集***流,注意把9.9674分别保留一位小数、两位小数的结果,根据情况适当加以指导。
4、练习七/6
(1)出示题目,学生独立完成左边一组后交流,说说怎样比的,要提醒大家注意什么。
(2)独立完成右边一组。集***流。
5、练习七/7。
(1)提醒学生看清要求,独立完成前两项。指名板演。
(2)集***流,注意格式和单位。
6、练习七/8
提醒学生看清要求。指导完成总产量的改写,并保留一位小数。注意格式。
© 2022 xuexicn.net,All Rights Reserved.