提起家乡的小河,没有人不竖起大拇指。走近小河,一股清新的空气使人心旷神怡,河水清澈见底,河水流过的声音胜过天下所有的音乐,细细的,轻轻的,好像是小河在和你聊天呢!岸边是一片草地,青草很柔软,躺在草地上,就好像置身于美丽的童话世界。
我已经有好长一段时间没有去小河了,想去小河看看。当我再次走向小河时,惊呆了,河水变得浑浑的,水面还飘着“新型鱼儿”——塑料袋和啤酒瓶,绿茵茵的草地,取代它的是几棵奄奄一息的枯草。突然,一股难闻的气味扑鼻而来,我赶紧捂住鼻子跑开了。不可能!这不可能是家乡的小河!我怎么也没有办法把眼前的小河和我印象中的小河联系在一起,可是,不管我怎么说服自己:这不是真的!都无法改变事实。
我向附近的人打听了一下,才知道原来在小溪的上游,新建了几家工厂,每天都会派出大量的废气,搞得小河乌烟瘴气,真是太可恶了!
这一切引发了我深深地思考,人类有规则,大自然也有它的规则,如果我们执意要去破坏这个规则,去破坏环境,后果不堪设想。
让我们从身边的小事做起,齐心协力共同保护环境,保护我们的明天。
昨天晚上,我写作业的时候,遇到了一个奥数难题:有四种水果,它们千克数的乘积在200~250之间,这些水果最少共有多少千克?我想不出来怎么做,就去问爸爸。爸爸让我自己把题多读几遍,好好它的意思。
我读了几遍,还是不太懂。爸爸没有直接告诉我答案,而是给我提了个问题:两个数的乘积等于20,这样的两个数有几组?哪一组的和最大?哪一组的和最小?
我说:有三组:1和20,2和10,4和5;
第一组的和1+20=21最大;
第二组的和2+10=12较小;
第三组的和4+5=9最小。
爸爸让我找规律,并提示我:是不是两个数差的越大,和越大?差的越小,和越小?
我发现就是这么个规律:差值越大,和越大;差值越小,和越小。
啊!我知道该怎么做了:要想符合乘积在200~250之间,总重量最少这两个条件,四种水果的千克重差值一定要小。
所以,这组数应该是:2、3、5、7;
它们的乘积是:2*3*5*7=210;
它们的和是:2+3+5+7=17。
由于不能确定我的答案是否正确,爸爸又编了个小程序,把乘积在200~250之间的所有数列了一个表,发现我分析的结果是正确的。
同时,我发现这道题还有另一个答案:2、4、5、6(2×4×5×6=240,2+4+5+6=17);我还发现“差值越大,和越大”这个规律也是正确的。
当母亲说这种鱼是结对出现时,小孩不信母亲的说法,于是又去寻找,果然小孩又找到了一条类似的鱼。是什么让母亲知道肯定还有一条鱼?又是什么使小孩真的找到了那另一条鱼?是自然的规律。那种鱼会结对出现是难以改变的自然规律。
自然的规律能让小孩找到另一条鱼,也能让我们找到正确的发展之路。
遵循自然的规律,它会给科学引领正确的方向,当门捷列夫用扑克牌排成最早的元素周期表时,在场的科学家鲜有认同。但当门捷列夫预测的元素一一被发现且性质相近时,门捷列夫对人们的惊奇却微微一笑:“这不过是自然的规律”。是啊,门捷列夫不过是发现了简单的自然规律,可正是遵循着这些自然规律,人们发现了一个又一个未知的元素。
合理地运用自然规律,它必将推动科学社会的发展,反之,若不遵守自然的规律,则必然会造成失败的苦果。好大喜功的中国人在中国统一后大搞“大跃进”,提出在十年内赶超英美这样不切实际的目标,“人有多大胆,地有多大产”在当时风靡一时,可这样严重违反自然规律的说法不可避免地导致了失败。前人失败的例子无时无刻不在激励着我们,要在遵守自然规律的基础上发展,这样才能收获成功。
即使有巨大的利益在眼前,可我们仍应保持清醒,遵守自然规律。工业化时期,贪婪的人们不断地生产,全然不顾工业尾气对地球生态环境造成的严重危害。于是乎,海平面上升,全球变暖,酸雨危害这些灾难接踵而至。人们开始重新审视自己犯下的“滔天大罪”,开始重新按规律生产,减少对自然的危害,遵守自然规律发展,这样才能让人类的生活更美好。
诚然,你可以将哥白尼等科学家送上火架台,但“日心说”的自然规律却不会因此改变,同样,无论再怎么否认,自然规律就是客观存在的,它并不会随人类的意志而改变。
因此,遵守自然的规律,这样你才能取得更好的发展。
有一次,菲菲和蓝猫玩跳格子的游戏,他们跳的格子是这样的:1 2 3 4 5,菲菲把一个沙包抛到第一格,再单脚跳进此格,捡起后回到起点,再抛进第2格,菲菲跳进第一格后再跳进第二格,但跳进第二格时,菲菲踩到线了,所以失败了。蓝猫接着玩,他一下就跳进了第二格,菲菲说它赖皮,不算。刚好洋博士经过这儿,问明情况后,夸它们说:“知道吗?你们玩出了一道有趣的题目。”蓝猫和菲菲很惊讶。
洋博士说:“你们跳格子,每次可以跳一格,也可以跳两格,还可以一格两格断续的跳,但每次最多只可以跳两格,跳完5格共有多少种跳法呢?”
菲菲和蓝猫都认真地想了想后,蓝猫拍着脑门说:“第一格,很显然只有一种跳法。第二格,可以一次跳一格,跳两次;还可以一次跳两格,跳一次;有两种跳法。第三格,可以一格一格的跳,跳三次;还可以先跳一格,再跳两格,跳两次;或者先跳两格,再跳一格,跳两次;有三种跳法。用同样的方法可以推知,跳进第四格有五种跳法,跳进第五格有八种跳法。”洋博士高兴的笑着说:“你们仔细观察跳进每一格的方法数1、2、3、5、8,有没有发现什么规律?”
菲菲回答说:“我知道,我知道,从第三个数起,每个数字是前两个数字的和。”
洋博士说:“对,这其实是一个有趣的数列。想不想听一个关于数列的故事呢?”
蓝猫和菲菲异口同声地说:“当然想,当然想。”
于是洋博士说,意大利比萨的一位绰号为斐波那契的数学家在《算盘书》这本数学著作中,提出了一个问题:兔子出生以后两个月就能生小兔,若每次不多不少恰好生一对(一雌一雄)。假如养了初生的小兔一对,试问一年以后(即第13个月)共可有多少对兔子(如果生下的小兔都不死的话)?
此题的推算方法和跳格子一样,从第三个月起每个月的兔子数是前两个月的兔子数之和。据此推知,一年后,共有233对兔子。以上兔子数构成的数列,现在称之为“兔子数列”。它广泛存在于我们的生活中,只有认真的观察,才能不断地了解生活中的奥秘。
蓝猫和菲菲不约而同地点头称是。
最后蓝猫说,我出两道关于数列的题,请大家一起算一算吧!题目是这样的:
1、4、7、10、( )、16、19、( )、25、28、96、( )、24、12、6、3
比一比,看谁最聪明吧!
© 2022 xuexicn.net,All Rights Reserved.