遵循规律方可成功作文(遵循规律作文素材正反面)

遵循规律方可成功作文(遵循规律作文素材正反面)

首页话题更新时间:2022-03-08 01:44:27
遵循规律方可成功作文(遵循规律作文素材正反面)

遵循规律方可成功作文【一】

数学的神奇无处不在,每一个数字、符号都是他的凭证。今天,我也证实了这一点:数学的神奇。

数学课下课后,我无意间发现了一个规律,一个关于平方的规律。我摊开练习本,看见练习本上的密密麻麻的验算过程,突然,一个不起眼的算式引起了我的注意:52-42.这是一个很简单的算式,口算也能算出来:9,而9不正是5+4的和么?我又换了一个式子:62-52,结果是11,11也正是6+5的和。我感到非常惊喜,仿佛发现了新大陆似的,快要疯了。但是好奇的我又想:这是两个相邻的数的平方,那不相邻的可以么?于是我就又列了一个式子:52-32,并且很快的得出了结果:16,这时,我懵了,一时半会儿得不出结论,这令我很沮丧。

忽然,灵光一闪——为什么不从5与3的和或差来考虑呢?5+3=8,5-3=2,8×2=16!16不就是52-32的差么?我又试了试:72-42=49-16=33。(7+4)×(7-4)=11×3=33,结果一样!我是一个固执的人,继续想:既然正数可以,负数同样适用么?比如(-3)2-52=9-25=-16。(-3+5)×(-3-5)=2×(-8)=-16。又是一个奇迹!这会不会是巧合呢?我换了大数试试:20002-19992=4000000-3996001=3999;如果用规律来计算的话,就是:(2000-1999)×(2000+1999)=1×3999=3999。哈哈,果然简便了很多!真是方便!小小的“+”“-”,具有着无穷的魔力,怎么不能说,数学是神奇的呢?

数学的“魔术”一个个被我“揭穿”,做到这一点,已经够了不起了,可我还誓不罢休,又接着算起了立方:43-33=64-27=37;33-23=27-8=19。这下,我可败下了阵,看来,还是“数学”略胜一筹,它再也露不出马脚了,我也甘拜下风。

——上课铃响了,清脆的铃声听起来格外悦耳,好像在庆贺我似的,取得了“破解家”的称号。虽然我还未看透数学,但是我却认识到数学是奇妙无穷的。

遵循规律方可成功作文【二】

有一次,菲菲和蓝猫玩跳格子的游戏,他们跳的格子是这样的:1 2 3 4 5,菲菲把一个沙包抛到第一格,再单脚跳进此格,捡起后回到起点,再抛进第2格,菲菲跳进第一格后再跳进第二格,但跳进第二格时,菲菲踩到线了,所以失败了。蓝猫接着玩,他一下就跳进了第二格,菲菲说它赖皮,不算。刚好洋博士经过这儿,问明情况后,夸它们说:“知道吗?你们玩出了一道有趣的题目。”蓝猫和菲菲很惊讶。

洋博士说:“你们跳格子,每次可以跳一格,也可以跳两格,还可以一格两格断续的跳,但每次最多只可以跳两格,跳完5格共有多少种跳法呢?”

菲菲和蓝猫都认真地想了想后,蓝猫拍着脑门说:“第一格,很显然只有一种跳法。第二格,可以一次跳一格,跳两次;还可以一次跳两格,跳一次;有两种跳法。第三格,可以一格一格的跳,跳三次;还可以先跳一格,再跳两格,跳两次;或者先跳两格,再跳一格,跳两次;有三种跳法。用同样的方法可以推知,跳进第四格有五种跳法,跳进第五格有八种跳法。”洋博士高兴的笑着说:“你们仔细观察跳进每一格的方法数1、2、3、5、8,有没有发现什么规律?”

菲菲回答说:“我知道,我知道,从第三个数起,每个数字是前两个数字的和。”

洋博士说:“对,这其实是一个有趣的数列。想不想听一个关于数列的故事呢?”

蓝猫和菲菲异口同声地说:“当然想,当然想。”

于是洋博士说,意大利比萨的一位绰号为斐波那契的数学家在《算盘书》这本数学著作中,提出了一个问题:兔子出生以后两个月就能生小兔,若每次不多不少恰好生一对(一雌一雄)。假如养了初生的小兔一对,试问一年以后(即第13个月)共可有多少对兔子(如果生下的小兔都不死的话)?

此题的推算方法和跳格子一样,从第三个月起每个月的兔子数是前两个月的兔子数之和。据此推知,一年后,共有233对兔子。以上兔子数构成的数列,现在称之为“兔子数列”。它广泛存在于我们的生活中,只有认真的观察,才能不断地了解生活中的奥秘。

蓝猫和菲菲不约而同地点头称是。

最后蓝猫说,我出两道关于数列的题,请大家一起算一算吧!题目是这样的:

1、4、7、10、(   )、16、19、(  )、25、28

96、(  )、24、12、6、3

比一比,看谁最聪明吧!

遵循规律方可成功作文【三】

论据的“摆放”是有条理,有原则的,并不是先想到哪个就先用哪个。当我们在列的提纲时,就要把相关的论据按一定的条理排列的,这些条理一般是:先写古代的,后说现代的;先谈国内的,再谈国外的;先写重要的,后说次要的;先写典型的,后说普通的;先写有名有据的,后无名无据的;先说关于人的,后说关于动物的……总之,论据的“摆放”就比如搞建筑修房子,是要讲究一定的条理与方法的,随便的“摆放”只能降低论据的可信度和说服力,或使得文章结构混乱,因此,论据的“摆放”不能太随意的,而是要遵循一些原则的。

总之,一篇议论文要充满说服力,其论据的选用是有一定的原则的,我们只有注意这些了原则,我们的议论文才能更有说服力一些。否则,尽管我们举了许多所谓的论据来证明中心论据,那也是没有多大作用的。

遵循规律方可成功作文【四】

昨天晚上,我写作业的时候,遇到了一个奥数难题:有四种水果,它们千克数的乘积在200~250之间,这些水果最少共有多少千克?我想不出来怎么做,就去问爸爸。爸爸让我自己把题多读几遍,好好它的意思。

我读了几遍,还是不太懂。爸爸没有直接告诉我答案,而是给我提了个问题:两个数的乘积等于20,这样的两个数有几组?哪一组的和最大?哪一组的和最小?

我说:有三组:1和20,2和10,4和5;

第一组的和1+20=21最大;

第二组的和2+10=12较小;

第三组的和4+5=9最小。

爸爸让我找规律,并提示我:是不是两个数差的越大,和越大?差的越小,和越小?

我发现就是这么个规律:差值越大,和越大;差值越小,和越小。

啊!我知道该怎么做了:要想符合乘积在200~250之间,总重量最少这两个条件,四种水果的千克重差值一定要小。

所以,这组数应该是:2、3、5、7;

它们的乘积是:2*3*5*7=210;

它们的和是:2+3+5+7=17。

由于不能确定我的答案是否正确,爸爸又编了个小程序,把乘积在200~250之间的所有数列了一个表,发现我分析的结果是正确的。

同时,我发现这道题还有另一个答案:2、4、5、6(2×4×5×6=240,2+4+5+6=17);我还发现“差值越大,和越大”这个规律也是正确的。

遵循规律方可成功作文【五】

著名儿童文学家郑渊洁有一本特殊的“育儿经”,他把自己的儿子郑亚旗从小学接回了家,彻底告别了现行的大众教育之路,走上一条以前闻所未闻的新路。郑渊洁亲自给儿子编教材,亲自给儿子上课,教授的内容与学校的课堂迥然不同,年幼的\'郑亚旗学得津津有味。许多人都曾预言“郑氏教育”会遭遇滑铁卢,可十几年过去了,郑亚旗不但没有碰到南墙,反而凭借其惊人的创造力和才华创办了自己的公司,年纪轻轻,就成为了比他父亲更成功的作家兼企业家。这能说明什么呢?

蹊径独辟,方可通幽。

1968年,发明家斯班瑟发明了压敏胶,俗称“不干胶”。这种新型胶水粘不牢东西,总是轻轻一揭就会掉下来,便被斯班瑟搁置一旁,数年间无人问津。直到1972年,商人弗雷利用这一项“不成功”的发明研制出“不干胶”即时贴,这一方便的发明很快便行销世界,直到今天仍大有用武之地。为什么大发明家斯班瑟认为没有用处的“不干胶”却在小商人弗雷手中绽放出了耀眼数十年的绚丽光芒?原因只是在于弗雷能够跳出前人的思维惯性,自己开辟出一条与众不同的新路,最终获得成功。

蹊径独辟,方可通幽。

战国时期帮助勾践灭吴复仇的功臣范蠡,将自己献于越王的七条计策用于治家之上,他来到陶地,更名为朱公,煮盐冶铁经商创造了巨大的财富,被后世尊为财神;被称为“杂交水稻之父”的袁隆平院士,打破“水稻没有*种优势”的谬论,培育出籼型杂交水稻“南优二号”,解决了世界上十多亿人的粮食短缺问题;世界第一大计算机应用公司微软,划时代地将计算机操作由Dos系统(文字界面改进为Windows系统(图形界面,使得人人可用的家用计算机问世……这一切的一切,都在昭示着同样的道理:

蹊径独辟,方可通幽。

正如为寻找风景而从背面上山的孩子们一样,找到一条独特的路便意味着找到一个比原定目标更加美丽的新风景,这会是人生中最重要的体验之一。同时,找到新路的是孩子,这也说明年轻就是我们独辟蹊径的资本。民国第一才女张爱玲说过一句名言:“出名要趁早”,而我想说的是,创新也要趁早。

蹊径独辟,方可通幽。

查看全文
大家还看了
也许喜欢
更多栏目

© 2022 xuexicn.net,All Rights Reserved.