教师资格考试作文规律(教师资格考试作文该怎么写)

教师资格考试作文规律(教师资格考试作文该怎么写)

首页话题更新时间:2023-04-07 03:51:37
教师资格考试作文规律(教师资格考试作文该怎么写)

教师资格考试作文规律【一】

大自然是天空飞翔的鸟儿,是一去不复返的河川,是草原上生生不息的野草。在这无边的大地上,大自然无所不在。

大自然是一本哲学书,它记录着万物生存的哲理,教生物如何在大自然中,生生不息地繁衍生存。在大地各个角落,都生长着各种动植物,它们撰写着大自然这本书。变化多端的天气,告诉我们生命是无常的,所以要以微笑面对挑战;野火烧不尽的野草,教导我们只要有坚强的意志,任何困难都可以渡过;一去不回的流水,正在诉说着时间是最宝贵的,没有时间,我们什么都做不成,要好好地珍惜用什么都换不到的宝贵时间;团结合作的蚂蚁,教我只要大家可以团结起来,没有办不成的事;能忍耐的大象,让我学到不可以太急躁,有时也要忍耐,才不会招来不好的事。

自然是无情的、是美妙的、是多变的,生活在其中的万物,也都有自己的生存法则,只要无法活下去,就会被自然淘汰。达尔文的物竞天择说,证明了这点,虽不要事事与人相争,但也不能没有竞争力,否则,将会被自然淘汰。

自然教导我们生命之道,和待人处世的哲学,它是最伟大的老师、指导者,就连自诩为万物之灵的我们,也必须向它学习。我感谢它的教导,使我们能度过各种困难的挑战!

教师资格考试作文规律【二】

有一次,菲菲和蓝猫玩跳格子的游戏,他们跳的格子是这样的:1 2 3 4 5,菲菲把一个沙包抛到第一格,再单脚跳进此格,捡起后回到起点,再抛进第2格,菲菲跳进第一格后再跳进第二格,但跳进第二格时,菲菲踩到线了,所以失败了。蓝猫接着玩,他一下就跳进了第二格,菲菲说它赖皮,不算。刚好洋博士经过这儿,问明情况后,夸它们说:“知道吗?你们玩出了一道有趣的题目。”蓝猫和菲菲很惊讶。

洋博士说:“你们跳格子,每次可以跳一格,也可以跳两格,还可以一格两格断续的跳,但每次最多只可以跳两格,跳完5格共有多少种跳法呢?”

菲菲和蓝猫都认真地想了想后,蓝猫拍着脑门说:“第一格,很显然只有一种跳法。第二格,可以一次跳一格,跳两次;还可以一次跳两格,跳一次;有两种跳法。第三格,可以一格一格的跳,跳三次;还可以先跳一格,再跳两格,跳两次;或者先跳两格,再跳一格,跳两次;有三种跳法。用同样的方法可以推知,跳进第四格有五种跳法,跳进第五格有八种跳法。”洋博士高兴的笑着说:“你们仔细观察跳进每一格的方法数1、2、3、5、8,有没有发现什么规律?”

菲菲回答说:“我知道,我知道,从第三个数起,每个数字是前两个数字的和。”

洋博士说:“对,这其实是一个有趣的数列。想不想听一个关于数列的故事呢?”

蓝猫和菲菲异口同声地说:“当然想,当然想。”

于是洋博士说,意大利比萨的一位绰号为斐波那契的数学家在《算盘书》这本数学著作中,提出了一个问题:兔子出生以后两个月就能生小兔,若每次不多不少恰好生一对(一雌一雄)。假如养了初生的小兔一对,试问一年以后(即第13个月)共可有多少对兔子(如果生下的小兔都不死的话)?

此题的推算方法和跳格子一样,从第三个月起每个月的兔子数是前两个月的兔子数之和。据此推知,一年后,共有233对兔子。以上兔子数构成的数列,现在称之为“兔子数列”。它广泛存在于我们的生活中,只有认真的观察,才能不断地了解生活中的奥秘。

蓝猫和菲菲不约而同地点头称是。

最后蓝猫说,我出两道关于数列的题,请大家一起算一算吧!题目是这样的:

1、4、7、10、(   )、16、19、(  )、25、28、96、(  )、24、12、6、3

比一比,看谁最聪明吧!

教师资格考试作文规律【三】

昨天晚上,我写作业的时候,遇到了一个奥数难题:有四种水果,它们千克数的乘积在200~250之间,这些水果最少共有多少千克?我想不出来怎么做,就去问爸爸。爸爸让我自己把题多读几遍,好好它的意思。

我读了几遍,还是不太懂。爸爸没有直接告诉我答案,而是给我提了个问题:两个数的乘积等于20,这样的两个数有几组?哪一组的和最大?哪一组的和最小?

我说:有三组:1和20,2和10,4和5;

第一组的和1+20=21最大;

第二组的和2+10=12较小;

第三组的和4+5=9最小。

爸爸让我找规律,并提示我:是不是两个数差的越大,和越大?差的越小,和越小?

我发现就是这么个规律:差值越大,和越大;差值越小,和越小。

啊!我知道该怎么做了:要想符合乘积在200~250之间,总重量最少这两个条件,四种水果的千克重差值一定要小。

所以,这组数应该是:2、3、5、7;

它们的乘积是:2*3*5*7=210;

它们的和是:2+3+5+7=17。

由于不能确定我的答案是否正确,爸爸又编了个小程序,把乘积在200~250之间的所有数列了一个表,发现我分析的结果是正确的。

同时,我发现这道题还有另一个答案:2、4、5、6(2×4×5×6=240,2+4+5+6=17);我还发现“差值越大,和越大”这个规律也是正确的。

查看全文
大家还看了
也许喜欢
更多栏目

© 2022 xuexicn.net,All Rights Reserved.