数学的神奇无处不在,每一个数字、符号都是他的凭证。今天,我也证实了这一点:数学的神奇。
数学课下课后,我无意间发现了一个规律,一个关于平方的规律。我摊开练习本,看见练习本上的密密麻麻的验算过程,突然,一个不起眼的算式引起了我的注意:52-42.这是一个很简单的算式,口算也能算出来:9,而9不正是5+4的和么?我又换了一个式子:62-52,结果是11,11也正是6+5的和。我感到非常惊喜,仿佛发现了新大陆似的,快要疯了。但是好奇的我又想:这是两个相邻的数的平方,那不相邻的可以么?于是我就又列了一个式子:52-32,并且很快的得出了结果:16,这时,我懵了,一时半会儿得不出结论,这令我很沮丧。
忽然,灵光一闪——为什么不从5与3的和或差来考虑呢?5+3=8,5-3=2,8×2=16!16不就是52-32的差么?我又试了试:72-42=49-16=33。(7+4×(7-4=11×3=33,结果一样!我是一个固执的人,继续想:既然正数可以,负数同样适用么?比如(-32-52=9-25=-16。(-3+5×(-3-5=2×(-8=-16。又是一个奇迹!这会不会是巧合呢?我换了大数试试:20002-19992=4000000-3996001=3999;如果用规律来计算的话,就是:(2000-1999×(2000+1999=1×3999=3999。哈哈,果然简便了很多!真是方便!小小的“+”“-”,具有着无穷的魔力,怎么不能说,数学是神奇的呢?
数学的“魔术”一个个被我“揭穿”,做到这一点,已经够了不起了,可我还誓不罢休,又接着算起了立方:43-33=64-27=37;33-23=27-8=19。这下,我可败下了阵,看来,还是“数学”略胜一筹,它再也露不出马脚了,我也甘拜下风。
——上课铃响了,清脆的铃声听起来格外悦耳,好像在庆贺我似的,取得了“破解家”的称号。虽然我还未看透数学,但是我却认识到数学是奇妙无穷的。
有一次,菲菲和蓝猫玩跳格子的游戏,他们跳的格子是这样的:1 2 3 4 5,菲菲把一个沙包抛到第一格,再单脚跳进此格,捡起后回到起点,再抛进第2格,菲菲跳进第一格后再跳进第二格,但跳进第二格时,菲菲踩到线了,所以失败了。蓝猫接着玩,他一下就跳进了第二格,菲菲说它赖皮,不算。刚好洋博士经过这儿,问明情况后,夸它们说:“知道吗?你们玩出了一道有趣的题目。”蓝猫和菲菲很惊讶。
洋博士说:“你们跳格子,每次可以跳一格,也可以跳两格,还可以一格两格断续的跳,但每次最多只可以跳两格,跳完5格共有多少种跳法呢?”
菲菲和蓝猫都认真地想了想后,蓝猫拍着脑门说:“第一格,很显然只有一种跳法。第二格,可以一次跳一格,跳两次;还可以一次跳两格,跳一次;有两种跳法。第三格,可以一格一格的跳,跳三次;还可以先跳一格,再跳两格,跳两次;或者先跳两格,再跳一格,跳两次;有三种跳法。用同样的方法可以推知,跳进第四格有五种跳法,跳进第五格有八种跳法。”洋博士高兴的笑着说:“你们仔细观察跳进每一格的方法数1、2、3、5、8,有没有发现什么规律?”
菲菲回答说:“我知道,我知道,从第三个数起,每个数字是前两个数字的和。”
洋博士说:“对,这其实是一个有趣的数列。想不想听一个关于数列的故事呢?”
蓝猫和菲菲异口同声地说:“当然想,当然想。”
于是洋博士说,意大利比萨的一位绰号为斐波那契的数学家在《算盘书》这本数学著作中,提出了一个问题:兔子出生以后两个月就能生小兔,若每次不多不少恰好生一对(一雌一雄)。假如养了初生的小兔一对,试问一年以后(即第13个月)共可有多少对兔子(如果生下的小兔都不死的话)?
此题的推算方法和跳格子一样,从第三个月起每个月的兔子数是前两个月的兔子数之和。据此推知,一年后,共有233对兔子。以上兔子数构成的数列,现在称之为“兔子数列”。它广泛存在于我们的生活中,只有认真的观察,才能不断地了解生活中的奥秘。
蓝猫和菲菲不约而同地点头称是。
最后蓝猫说,我出两道关于数列的题,请大家一起算一算吧!题目是这样的:
1、4、7、10、( )、16、19、( )、25、28、96、( )、24、12、6、3
比一比,看谁最聪明吧!
数学的神奇无处不在,每一个数字、符号都是他的凭证。今天,我也证实了这一点:数学的神奇。
数学课下课后,我无意间发现了一个规律,一个关于平方的规律。我摊开练习本,看见练习本上的密密麻麻的验算过程,突然,一个不起眼的算式引起了我的注意:52-42.这是一个很简单的算式,口算也能算出来:9,而9不正是5+4的和么?我又换了一个式子:62-52,结果是11,11也正是6+5的和。我感到非常惊喜,仿佛发现了新大陆似的,快要疯了。但是好奇的我又想:这是两个相邻的数的平方,那不相邻的可以么?于是我就又列了一个式子:52-32,并且很快的得出了结果:16,这时,我懵了,一时半会儿得不出结论,这令我很沮丧。
忽然,灵光一闪——为什么不从5与3的和或差来考虑呢?5+3=8,5-3=2,8×2=16!16不就是52-32的差么?我又试了试:72-42=49-16=33。(7+4)×(7-4)=11×3=33,结果一样!我是一个固执的人,继续想:既然正数可以,负数同样适用么?比如(-3)2-52=9-25=-16。(-3+5)×(-3-5)=2×(-8)=-16。又是一个奇迹!这会不会是巧合呢?我换了大数试试:20002-19992=4000000-3996001=3999;如果用规律来计算的话,就是:(2000-1999)×(2000+1999)=1×3999=3999。哈哈,果然简便了很多!真是方便!小小的“+”“-”,具有着无穷的魔力,怎么不能说,数学是神奇的呢?
数学的“魔术”一个个被我“揭穿”,做到这一点,已经够了不起了,可我还誓不罢休,又接着算起了立方:43-33=64-27=37;33-23=27-8=19。这下,我可败下了阵,看来,还是“数学”略胜一筹,它再也露不出马脚了,我也甘拜下风。
——上课铃响了,清脆的铃声听起来格外悦耳,好像在庆贺我似的,取得了“破解家”的称号。虽然我还未看透数学,但是我却认识到数学是奇妙无穷的。
有一次,菲菲和蓝猫玩跳格子的游戏,他们跳的格子是这样的:1 2 3 4 5,菲菲把一个沙包抛到第一格,再单脚跳进此格,捡起后回到起点,再抛进第2格,菲菲跳进第一格后再跳进第二格,但跳进第二格时,菲菲踩到线了,所以失败了。蓝猫接着玩,他一下就跳进了第二格,菲菲说它赖皮,不算。刚好洋博士经过这儿,问明情况后,夸它们说:“知道吗?你们玩出了一道有趣的题目。”蓝猫和菲菲很惊讶。
洋博士说:“你们跳格子,每次可以跳一格,也可以跳两格,还可以一格两格断续的跳,但每次最多只可以跳两格,跳完5格共有多少种跳法呢?”
菲菲和蓝猫都认真地想了想后,蓝猫拍着脑门说:“第一格,很显然只有一种跳法。第二格,可以一次跳一格,跳两次;还可以一次跳两格,跳一次;有两种跳法。第三格,可以一格一格的跳,跳三次;还可以先跳一格,再跳两格,跳两次;或者先跳两格,再跳一格,跳两次;有三种跳法。用同样的方法可以推知,跳进第四格有五种跳法,跳进第五格有八种跳法。”洋博士高兴的笑着说:“你们仔细观察跳进每一格的方法数1、2、3、5、8,有没有发现什么规律?”
菲菲回答说:“我知道,我知道,从第三个数起,每个数字是前两个数字的和。”
洋博士说:“对,这其实是一个有趣的数列。想不想听一个关于数列的故事呢?”
蓝猫和菲菲异口同声地说:“当然想,当然想。”
于是洋博士说,意大利比萨的一位绰号为斐波那契的数学家在《算盘书》这本数学著作中,提出了一个问题:兔子出生以后两个月就能生小兔,若每次不多不少恰好生一对(一雌一雄。假如养了初生的小兔一对,试问一年以后(即第13个月共可有多少对兔子(如果生下的小兔都不死的话?
此题的推算方法和跳格子一样,从第三个月起每个月的兔子数是前两个月的兔子数之和。据此推知,一年后,共有233对兔子。以上兔子数构成的数列,现在称之为“兔子数列”。它广泛存在于我们的生活中,只有认真的观察,才能不断地了解生活中的奥秘。
蓝猫和菲菲不约而同地点头称是。
最后蓝猫说,我出两道关于数列的题,请大家一起算一算吧!题目是这样的:
1、4、7、10、( 、16、19、( 、25、28
96、( 、24、12、6、3
比一比,看谁最聪明吧!
六一儿童节马上就要到了,丁丁冬冬和心心老师忙着在“数学乐园”里布置联欢会会场呢!
这时,智慧星铿锵有力的声音传了过来:“一二一、一二一……”当丁丁冬冬和心心老师抬起头时,智慧星已经站到了他们的面前。
“啪”地一声,一个标准的军礼。“报告首长,智慧星前来报到。”
“好呀,来了就好!我们已经把小彩旗串在了一起,你就把我们串好的小彩旗挂起来吧!”心心老师温和地说:“注意安全哟!”
“得令!”智慧星拿起彩旗挂在墙上。“咦,你们串的小彩旗蛮有规律的呀!一面黄一面红、一面黄一面红,依次重复出现,真好看哟!”
“是的,有规律的排列给我们带来了一种美的享受!其实,你刚才来的时候就带来了好多规律。”丁丁冬冬手里一边忙活,一边说。
智慧星很吃惊,把自己上上下下、左左右右看了一遍。
“你‘一二一、一二一’的吆喝声里有规律吧!你走路的时候,左右手的摆动、左右腿的抬动,这些动作里呀也有规律。”
听了丁丁冬冬的话,智慧星紧走几步。
“就是就是,我的左手在前的时候,右腿就在前,右手和左腿在后;我的右手在前的时候,左腿就在前,左手和右腿在后。左右手、左右腿是交替出现的。”
心心老师鼓起掌来。
“啪”、“ 啪啪”、“ 啪”、“ 啪啪”、 “ 啪”、“ 啪啪”……
“这掌声里也有规律,我也拍拍。”智慧星高兴地说。
“啪”、“ 啪啪”、“ 啪”、“ 啪啪”……智慧星一边有规律地拍手,一边东张张西望望。
他在找什么呢?他在找规律呢!
小朋友们,生活中的规律多着呢,睁大眼睛,也来找一找吧……
当母亲说这种鱼是结对出现时,小孩不信母亲的说法,于是又去寻找,果然小孩又找到了一条类似的鱼。是什么让母亲知道肯定还有一条鱼?又是什么使小孩真的找到了那另一条鱼?是自然的规律。那种鱼会结对出现是难以改变的自然规律。
自然的规律能让小孩找到另一条鱼,也能让我们找到正确的发展之路。
遵循自然的规律,它会给科学引领正确的方向,当门捷列夫用扑克牌排成最早的元素周期表时,在场的科学家鲜有认同。但当门捷列夫预测的元素一一被发现且性质相近时,门捷列夫对人们的惊奇却微微一笑:“这不过是自然的规律”。是啊,门捷列夫不过是发现了简单的自然规律,可正是遵循着这些自然规律,人们发现了一个又一个未知的元素。
合理地运用自然规律,它必将推动科学社会的发展,反之,若不遵守自然的规律,则必然会造成失败的苦果。好大喜功的中国人在中国统一后大搞“大跃进”,提出在十年内赶超英美这样不切实际的目标,“人有多大胆,地有多大产”在当时风靡一时,可这样严重违反自然规律的说法不可避免地导致了失败。前人失败的例子无时无刻不在激励着我们,要在遵守自然规律的基础上发展,这样才能收获成功。
即使有巨大的利益在眼前,可我们仍应保持清醒,遵守自然规律。工业化时期,贪婪的人们不断地生产,全然不顾工业尾气对地球生态环境造成的严重危害。于是乎,海平面上升,全球变暖,酸雨危害这些灾难接踵而至。人们开始重新审视自己犯下的“滔天大罪”,开始重新按规律生产,减少对自然的危害,遵守自然规律发展,这样才能让人类的生活更美好。
诚然,你可以将哥白尼等科学家送上火架台,但“日心说”的自然规律却不会因此改变,同样,无论再怎么否认,自然规律就是客观存在的,它并不会随人类的意志而改变。
因此,遵守自然的规律,这样你才能取得更好的发展。
我是学校奥数兴趣小组的一员,每周星期三的放学后,我都要去学奥数。这天,我来到了奥数教室,老师发下来了一张纸,纸上最显眼的地方印着“找规律”三个大字。一看到这三个字,我的'脑中就浮现出一个个搅在一起的自然数,这些自然数犹如乱麻,怎么也理不清。理不清也得理。我仔细地看了看题,第一道题是“2、4、6、8”,“哈,这最简单,这些数不都是偶数么?”刚想完,我就拿起笔,飞笔疾书,在空格上写下了“10、12、14”。见第一题这么顺利地通过,我轻轻的吁了一口气。哪知,一波未平,一波又起。数字规律第二题见我轻轻松松地将第一题给摆平了,急忙向我发起了进攻。这道题是“1、2、2、4、3、8……”我一瞧,不禁呆住了,“这该填什么啊?这分明是道没有规律的题嘛。”我心里嘀咕着。我皱着眉头,两眼直瞪着纸上的题目,笔在草稿纸上不断地比划着……很快,我又找到了其中的规律,我立马写在了纸上。因为又一道题在我手中迎刃而解,我不觉信心大振。
第三题见我连破两道题,连忙横空出世,将我阻拦。世上确实没有永远简单的题,我真的被它难住了,那是“1、1、2、3、5、8、13……”你说,这么难的题我怎么能做出呢?但正所谓“天下没有攻克不了的难关”。我绞尽脑汁思索着,时间一分一秒地流逝着,我的手心里也冒出了汗,身子也不如刚才直了,但我还是坚持着。15分钟到了,20分钟到了,30分钟。我再也忍不住了,放下了手中的笔,打算放弃对这道题的进攻。我对自己说:“吴梦威呀,你难道忘了刚才你连破两题的威风了么?你可不能前功尽弃呀!”想着想着,我又握起了笔。突然,我的脑中闪过了一个念头,我仔细一回想,“对啊,就是这个方法!”在我的辛苦思索下,这道题终于被我给做出了。此时,我顿感心情舒畅。纸上的数字也似乎在为我而感到高兴。
这次做奥数题,真是让我受益匪浅啊!
© 2022 xuexicn.net,All Rights Reserved.