有一次,菲菲和蓝猫玩跳格子的游戏,他们跳的格子是这样的:1 2 3 4 5,菲菲把一个沙包抛到第一格,再单脚跳进此格,捡起后回到起点,再抛进第2格,菲菲跳进第一格后再跳进第二格,但跳进第二格时,菲菲踩到线了,所以失败了。蓝猫接着玩,他一下就跳进了第二格,菲菲说它赖皮,不算。刚好洋博士经过这儿,问明情况后,夸它们说:“知道吗?你们玩出了一道有趣的题目。”蓝猫和菲菲很惊讶。
洋博士说:“你们跳格子,每次可以跳一格,也可以跳两格,还可以一格两格断续的跳,但每次最多只可以跳两格,跳完5格共有多少种跳法呢?”
菲菲和蓝猫都认真地想了想后,蓝猫拍着脑门说:“第一格,很显然只有一种跳法。第二格,可以一次跳一格,跳两次;还可以一次跳两格,跳一次;有两种跳法。第三格,可以一格一格的跳,跳三次;还可以先跳一格,再跳两格,跳两次;或者先跳两格,再跳一格,跳两次;有三种跳法。用同样的方法可以推知,跳进第四格有五种跳法,跳进第五格有八种跳法。”洋博士高兴的笑着说:“你们仔细观察跳进每一格的方法数1、2、3、5、8,有没有发现什么规律?”
菲菲回答说:“我知道,我知道,从第三个数起,每个数字是前两个数字的和。”
洋博士说:“对,这其实是一个有趣的数列。想不想听一个关于数列的故事呢?”
蓝猫和菲菲异口同声地说:“当然想,当然想。”
于是洋博士说,意大利比萨的一位绰号为斐波那契的数学家在《算盘书》这本数学著作中,提出了一个问题:兔子出生以后两个月就能生小兔,若每次不多不少恰好生一对(一雌一雄。假如养了初生的小兔一对,试问一年以后(即第13个月共可有多少对兔子(如果生下的小兔都不死的话?
此题的推算方法和跳格子一样,从第三个月起每个月的兔子数是前两个月的兔子数之和。据此推知,一年后,共有233对兔子。以上兔子数构成的数列,现在称之为“兔子数列”。它广泛存在于我们的生活中,只有认真的观察,才能不断地了解生活中的奥秘。
蓝猫和菲菲不约而同地点头称是。
最后蓝猫说,我出两道关于数列的题,请大家一起算一算吧!题目是这样的:
1、4、7、10、( 、16、19、( 、25、28
96、( 、24、12、6、3
比一比,看谁最聪明吧!
数学的神奇无处不在,每一个数字、符号都是他的凭证。今天,我也证实了这一点:数学的神奇。
数学课下课后,我无意间发现了一个规律,一个关于平方的规律。我摊开练习本,看见练习本上的密密麻麻的验算过程,突然,一个不起眼的算式引起了我的注意:52-42.这是一个很简单的算式,口算也能算出来:9,而9不正是5+4的和么?我又换了一个式子:62-52,结果是11,11也正是6+5的和。我感到非常惊喜,仿佛发现了新大陆似的,快要疯了。但是好奇的我又想:这是两个相邻的数的平方,那不相邻的可以么?于是我就又列了一个式子:52-32,并且很快的得出了结果:16,这时,我懵了,一时半会儿得不出结论,这令我很沮丧。
忽然,灵光一闪——为什么不从5与3的和或差来考虑呢?5+3=8,5-3=2,8×2=16!16不就是52-32的差么?我又试了试:72-42=49-16=33。(7+4)×(7-4)=11×3=33,结果一样!我是一个固执的人,继续想:既然正数可以,负数同样适用么?比如(-3)2-52=9-25=-16。(-3+5)×(-3-5)=2×(-8)=-16。又是一个奇迹!这会不会是巧合呢?我换了大数试试:20002-19992=4000000-3996001=3999;如果用规律来计算的话,就是:(2000-1999)×(2000+1999)=1×3999=3999。哈哈,果然简便了很多!真是方便!小小的“+”“-”,具有着无穷的魔力,怎么不能说,数学是神奇的呢?
数学的“魔术”一个个被我“揭穿”,做到这一点,已经够了不起了,可我还誓不罢休,又接着算起了立方:43-33=64-27=37;33-23=27-8=19。这下,我可败下了阵,看来,还是“数学”略胜一筹,它再也露不出马脚了,我也甘拜下风。
——上课铃响了,清脆的铃声听起来格外悦耳,好像在庆贺我似的,取得了“破解家”的称号。虽然我还未看透数学,但是我却认识到数学是奇妙无穷的。
找规律是一种十分锻炼人逻辑思维的数理游戏,它千变万化,没有一种固定的模式。有些同学可能讨厌它,认为它很枯燥很无奈,一碰到这样的题就变得抓耳挠腮。但我很喜欢,因为在找规律的过程中不但锻炼了我的观察力、相互联系的能力及逻辑思维能力,我还从中体会到了无穷的乐趣。
其实,我对找规律的喜好,还是从做妈妈给我买的《哈佛给学生做的300个思维游戏》这本书上的.游戏开始的。书中列举了300个思维游戏题,内容丰富,形式活泼,其中有许多找规律的题型。例如:你能找出最后一个数字盘中问号部分应当填入的数字吗?
猛一看三个圆盘中相连的两个数字之间毫无规律可言,这可怎么解呢?别急,慢慢地观察或许不难发现,假若把每个圆盘中相对应的一组数字拿出来比较一下,规律好像就出来了。真的吔,每个圆盘中相对应的一组数字之间都存在相同的倍数,或叫“特定数”。如:
第一个圆盘中:21÷7=3 9÷3=3 15÷5=3 27÷9=3;即第一个圆盘中的特定数就是3。
第二个圆盘中:30÷5=6 24÷4=6 12÷2=6 36÷6=6;即第二个圆盘中的特定数就是6。
好吧,既然第一、第二个圆盘中的规律都是找“特定数”,那么第三个圆盘中相对应的一组数字也应该符合这个规律,即找特定数。从9÷1=9 45÷5=9 27÷3=9 就可得出,第三个圆盘的特定数是9。以此类推,?÷8 = 9 那么 ?= 72
所以,问号部分应当填入数字72。
啊!终于找出来了问号部分的答案了。每当此时,我都无比的激动和兴奋。因为经过苦苦思索后,又猛然间豁然开朗,那种成功的喜悦是任何言语都无法形容的。
就是这样,一次次的苦思觅想,一次次的豁然开朗,使我欲罢不能。慢慢地我喜欢上了这种痛苦并快乐着的找规律游戏,只有亲身经历过的人才能真正体会到其中的乐趣。
通过找规律的游戏,我渐渐地领悟到一个真理:规律是看不见摸不着的,只有深入其中,不断探索,勇于拼搏的人才能真正的找到它。
昨天晚上,我写作业的时候,遇到了一个奥数难题:有四种水果,它们千克数的乘积在200~250之间,这些水果最少共有多少千克?我想不出来怎么做,就去问爸爸。爸爸让我自己把题多读几遍,好好它的意思。
我读了几遍,还是不太懂。爸爸没有直接告诉我答案,而是给我提了个问题:两个数的乘积等于20,这样的两个数有几组?哪一组的和最大?哪一组的和最小?
我说:有三组:1和20,2和10,4和5;
第一组的和1+20=21最大;
第二组的和2+10=12较小;
第三组的和4+5=9最小。
爸爸让我找规律,并提示我:是不是两个数差的越大,和越大?差的越小,和越小?
我发现就是这么个规律:差值越大,和越大;差值越小,和越小。
啊!我知道该怎么做了:要想符合乘积在200~250之间,总重量最少这两个条件,四种水果的千克重差值一定要小。
所以,这组数应该是:2、3、5、7;
它们的乘积是:2*3*5*7=210;
它们的和是:2+3+5+7=17。
由于不能确定我的答案是否正确,爸爸又编了个小程序,把乘积在200~250之间的所有数列了一个表,发现我分析的结果是正确的。
同时,我发现这道题还有另一个答案:2、4、5、6(2×4×5×6=240,2+4+5+6=17);我还发现“差值越大,和越大”这个规律也是正确的。
找规律是一种十分锻炼人逻辑思维的数理游戏,它千变万化,没有一种固定的模式。有些同学可能讨厌它,认为它很枯燥很无奈,一碰到这样的题就变得抓耳挠腮。但我很喜欢,因为在找规律的.过程中不但锻炼了我的观察力、相互联系的能力及逻辑思维能力,我还从中到了无穷的乐趣。
其实,我对找规律的喜好,还是从做妈妈给我买的《哈佛给学生做的300个思维游戏》这本书上的游戏开始的。书中列举了300个思维游戏题,内容丰富,形式活泼,其中有许多找规律的题型。例如:你能找出最后一个数字盘中问号部分应当填入的数字吗?
猛一看三个圆盘中相连的两个数字之间毫无规律可言,这可怎么解呢?别急,慢慢地观察或许不难发现,假若把每个圆盘中相对应的一组数字拿出来比较一下,规律好像就出来了。真的吔,每个圆盘中相对应的一组数字之间都存在相同的倍数,或叫“特定数”。如:
第一个圆盘中:21÷7=3 9÷3=3 15÷5=3 27÷9=3;即第一个圆盘中的特定数就是3。
第二个圆盘中:30÷5=6 24÷4=6 12÷2=6 36÷6=6;即第二个圆盘中的特定数就是6。
好吧,既然第一、第二个圆盘中的规律都是找“特定数”,那么第三个圆盘中相对应的一组数字也应该符合这个规律,即找特定数。从9÷1=9 45÷5=9 27÷3=9 就可得出,第三个圆盘的特定数是9。以此类推,?÷8 = 9 那么 ?= 72
所以,问号部分应当填入数字72。
啊!终于找出来了问号部分的答案了。每当此时,我都无比的激动和兴奋。因为经过苦苦思索后,又猛然间豁然开朗,那种成功的喜悦是任何言语都无法形容的。
就是这样,一次次的苦思觅想,一次次的豁然开朗,使我欲罢不能。慢慢地我喜欢上了这种痛苦并快乐着的找规律游戏,只有亲身经历过的人才能真正体会到其中的乐趣。
通过找规律的游戏,我渐渐地领悟到一个真理:规律是看不见摸不着的,只有深入其中,不断探索,勇于拼搏的人才能真正的找到它。
六一儿童节马上就要到了,丁丁冬冬和心心老师忙着在“数学乐园”里布置联欢会会场呢!
这时,智慧星铿锵有力的声音传了过来:“一二一、一二一……”当丁丁冬冬和心心老师抬起头时,智慧星已经站到了他们的面前。
“啪”地一声,一个标准的军礼。“报告首长,智慧星前来报到。”
“好呀,来了就好!我们已经把小彩旗串在了一起,你就把我们串好的小彩旗挂起来吧!”心心老师温和地说:“注意安全哟!”
“得令!”智慧星拿起彩旗挂在墙上。“咦,你们串的小彩旗蛮有规律的呀!一面黄一面红、一面黄一面红,依次重复出现,真好看哟!”
“是的,有规律的排列给我们带来了一种美的享受!其实,你刚才来的时候就带来了好多规律。”丁丁冬冬手里一边忙活,一边说。
智慧星很吃惊,把自己上上下下、左左右右看了一遍。
“你‘一二一、一二一’的吆喝声里有规律吧!你走路的时候,左右手的摆动、左右腿的抬动,这些动作里呀也有规律。”
听了丁丁冬冬的话,智慧星紧走几步。
“就是就是,我的左手在前的时候,右腿就在前,右手和左腿在后;我的右手在前的时候,左腿就在前,左手和右腿在后。左右手、左右腿是交替出现的。”
心心老师鼓起掌来。
“啪”、“ 啪啪”、“ 啪”、“ 啪啪”、 “ 啪”、“ 啪啪”……
“这掌声里也有规律,我也拍拍。”智慧星高兴地说。
“啪”、“ 啪啪”、“ 啪”、“ 啪啪”……智慧星一边有规律地拍手,一边东张张西望望。
他在找什么呢?他在找规律呢!
小朋友们,生活中的规律多着呢,睁大眼睛,也来找一找吧……
在英语村里,模拟了现实生活中的四个场景——“城市馆”、“自然馆”、“生活馆”和“商业馆”,四个场馆中的部分物品和布景都是实物,每个场馆又被分成几个场景,外教和中教轮流授课,我们这次可真是与英语世界来了个亲密接触。在全英语的语言环境和实物情境下,我们对学习英语的兴趣变得前所未有的高涨。就比如说在城市馆里吧,刚进城市馆,一个美丽的大都市——上海的模型立刻呈现在我们的面前,那一个个地标性建筑物的模型,在镭射灯光的映衬下是显得格外的雄伟壮丽,你甚至猜想不到的是在城市馆里居然会有一节能移动的地铁车厢,在最后一节课中,老师终于带着我们“乘坐”了一次地铁,这“地铁”中,老师不停的作者令人捧腹的`动作,使得大家都争先恐后的想“乘坐”一次平时已经坐得习以为常的地铁。每当外教拉开悬挂的粉红色幕布时,或旋转布景板进行场景切换时,我们都会发出声声惊叹,因为,我们以前从来没有这样学习过英语。在商业馆的超市里,甚至可以看到真实的收银机等等实物,我们真实地体验着用英语对话来购物的整个流程,我们扮演着不同的角色,来学习这个角色所要说得话;在生活馆里,老师会用英语生动地为我们介绍各式厨具用品,并且还和我们做游戏,让我们在游戏当中来巩固与加深你对这个英语单词的印象,如果你读得好的话,老师会和你拍手,表示鼓励;在自然馆中,我们仿佛亲身来到了大自然中,有热带雨林,有北极,海洋,在教室的墙上还贴着国家的地图和标着英语单词的国旗名称,在自然馆中最有趣的还是要数在进门时有一座假山,不高的假山上悬挂着一个吊绳,仿佛可以真的用来攀岩一般。我们不时为老师们幽默、生动的语言、表情和肢体动作爆发出阵阵笑声,为同学的精彩表现鼓掌加油。
通过这次活动,让我们在现实生活中快乐的学习了一次英语,也然我的英语水平提高了不少,希望以后这样的实践活动多一些,能够我们丰富我们的课外生活。我期待着有更多的同学能来到这个英语村里来,让他们也体验到更多学习英语的快乐!
© 2022 xuexicn.net,All Rights Reserved.