数学的神奇无处不在,每一个数字、符号都是他的凭证。今天,我也证实了这一点:数学的神奇。
数学课下课后,我无意间发现了一个规律,一个关于平方的规律。我摊开练习本,看见练习本上的密密麻麻的验算过程,突然,一个不起眼的算式引起了我的注意:52-42.这是一个很简单的算式,口算也能算出来:9,而9不正是5+4的和么?我又换了一个式子:62-52,结果是11,11也正是6+5的和。我感到非常惊喜,仿佛发现了新大陆似的,快要疯了。但是好奇的我又想:这是两个相邻的数的平方,那不相邻的可以么?于是我就又列了一个式子:52-32,并且很快的得出了结果:16,这时,我懵了,一时半会儿得不出结论,这令我很沮丧。
忽然,灵光一闪——为什么不从5与3的和或差来考虑呢?5+3=8,5-3=2,8×2=16!16不就是52-32的差么?我又试了试:72-42=49-16=33。(7+4)×(7-4)=11×3=33,结果一样!我是一个固执的人,继续想:既然正数可以,负数同样适用么?比如(-3)2-52=9-25=-16。(-3+5)×(-3-5)=2×(-8)=-16。又是一个奇迹!这会不会是巧合呢?我换了大数试试:20002-19992=4000000-3996001=3999;如果用规律来计算的话,就是:(2000-1999)×(2000+1999)=1×3999=3999。哈哈,果然简便了很多!真是方便!小小的“+”“-”,具有着无穷的魔力,怎么不能说,数学是神奇的呢?
数学的“魔术”一个个被我“揭穿”,做到这一点,已经够了不起了,可我还誓不罢休,又接着算起了立方:43-33=64-27=37;33-23=27-8=19。这下,我可败下了阵,看来,还是“数学”略胜一筹,它再也露不出马脚了,我也甘拜下风。
——上课铃响了,清脆的铃声听起来格外悦耳,好像在庆贺我似的,取得了“破解家”的称号。虽然我还未看透数学,但是我却认识到数学是奇妙无穷的。
陪刘昶看完电影出来,已经快10点了,可是刘昶劲头还是很足。是啊 ,今天看的是奥特曼的电影,确实够让他兴奋的。迎着习习晚风,刘昶提议说:“妈妈,咱们来找规律吧!”
“什么规律?怎么找?”刘昶的话让我一头雾水。
刘昶微皱着眉,想着怎么跟我这个“学生”讲解。他指着两边的树说:“你看这些树,它们总是一棵大,一棵小,这就是它们的规律。”
哦,我明白了。这应该是最近数学书上正在学习的“找规律”的内容。刘昶愿意在生活中学习数学,我自然乐得配合。“那么,咱们找吧!看谁找得多!”
我仔细地找,发现脚下的地砖颜色很有规律。“地砖总是一块红色,一块黄色!”我抢着说。
刘昶也在找:“那边的灯一闪一闪,总是红色、绿色、蓝色这样来变化!”
刘昶突然蹦来蹦去,让我找他动作的规律。我仔细一观察,原来,刘昶隔一块砖蹦一下,隔一块砖蹦一下。嘿,还真挺有意思。
刘昶又规规矩矩地走了起来,还让我找规律。这下可难住我了,我左看右看也没有看出门道。刘昶说:“你看,我的左手在前的时候,我的右手在后;我的右手在前的时候,我的左手在后。”哈哈,是啊,运动也有规律可找啊,我怎么就没有发现呢?
走着走着,刘昶又开始玩花样了。他先隔一块砖蹦一下,再隔两块砖蹦,然后隔着三块砖蹦,想让我找规律。可是,奈何小小刘昶,腿儿不长,蹦不了四块砖那么远的距离,急得他不行,却把我乐坏了。
数学就在我们身边,是实实在在的。当数学知识和生活联系在一起,它就会趣味横生,甚至妙不可言。和孩子一起,爱上数学吧!
找规律是一种十分锻炼人逻辑思维的数理游戏,它千变万化,没有一种固定的模式。有些同学可能讨厌它,认为它很枯燥很无奈,一碰到这样的题就变得抓耳挠腮。但我很喜欢,因为在找规律的过程中不但锻炼了我的观察力、相互联系的能力及逻辑思维能力,我还从中体会到了无穷的乐趣。
其实,我对找规律的喜好,还是从做妈妈给我买的《哈佛给学生做的300个思维游戏》这本书上的.游戏开始的。书中列举了300个思维游戏题,内容丰富,形式活泼,其中有许多找规律的题型。例如:你能找出最后一个数字盘中问号部分应当填入的数字吗?
猛一看三个圆盘中相连的两个数字之间毫无规律可言,这可怎么解呢?别急,慢慢地观察或许不难发现,假若把每个圆盘中相对应的一组数字拿出来比较一下,规律好像就出来了。真的吔,每个圆盘中相对应的一组数字之间都存在相同的倍数,或叫“特定数”。如:
第一个圆盘中:21÷7=3 9÷3=3 15÷5=3 27÷9=3;即第一个圆盘中的特定数就是3。
第二个圆盘中:30÷5=6 24÷4=6 12÷2=6 36÷6=6;即第二个圆盘中的特定数就是6。
好吧,既然第一、第二个圆盘中的规律都是找“特定数”,那么第三个圆盘中相对应的一组数字也应该符合这个规律,即找特定数。从9÷1=9 45÷5=9 27÷3=9 就可得出,第三个圆盘的特定数是9。以此类推,?÷8 = 9 那么 ?= 72
所以,问号部分应当填入数字72。
啊!终于找出来了问号部分的答案了。每当此时,我都无比的激动和兴奋。因为经过苦苦思索后,又猛然间豁然开朗,那种成功的喜悦是任何言语都无法形容的。
就是这样,一次次的苦思觅想,一次次的豁然开朗,使我欲罢不能。慢慢地我喜欢上了这种痛苦并快乐着的找规律游戏,只有亲身经历过的人才能真正体会到其中的乐趣。
通过找规律的游戏,我渐渐地领悟到一个真理:规律是看不见摸不着的,只有深入其中,不断探索,勇于拼搏的人才能真正的找到它。
顺其自然吧,讲的是不是很不屑呢!
不想辩解什么,展现的只是平静,坦然,淡泊。
箫声咽,音尘绝,这季的青春,我们携手共度。
理工科男生,细腻的文字,被人误以为是江南女子。
斐然的文采,忧伤的情绪,尽情掩埋心中最深的伤痛。
抱着渺茫的心态加了他,出乎意料的,他出现在我的好友里。
可能太多的人对他说过:你的文章太有文采了,当他面对雷同的话语时,
我收到的回复是:其实我把我的情感藏的很深,没人能读得懂,你只不过被它华丽的词藻所吸引。这句话,我在他的留言板上也看到了。
萧说:“我写文章只是抒写自己的心情。
我的'文章没有思想,很散。
文章有思想才是最重要的,不一定需要华丽的词藻。
有人为“音尘绝”没能进热门空间而遗憾,不平。萧说:“我只是静静的写自己的文字,不求所谓的人气。其实一个人安安静静的,和几个知音在空间说说话我就很喜欢了!网络这个东西太过虚幻,我们都该将名利释怀!”
很赞,不是吗?如此心态,怎叫我不佩服呢!!
我无法说,17年时间,我学到多少,我领悟多深,但至少在感受中进取前行。
我无法说,爸爸妈妈,请你们放心,我步入十八,放手给我空间去自由飞翔。
我感受浅薄,涉世未深。
任何感动的场面,随时都会让我泪流满面。
《幕后》,我看到了上春晚的马广福老伯。春晚结束后,他甚是激动,他感慨总算放下了心中浮着的石头了。出了演播厅,被记录下的一个场景,成了我无法抹去的记忆――“我真的没想到,做为一个农民可以上春晚,这可以说是我生命中的一个转折点吧……”说完,他瘦皱的脸上留下了幸福的热泪。
成名对于这位老汉来说,并不意味什么;上春节联欢晚会,对他却是一种荣耀。
以农民的质朴,认真的态度,通过歌唱的方式,给全国观众送去新春美好祝福。
纯美的生活,平和的心态,
真挚的面对,诚恳的答话。
对于无法熟知的所有,我以此对抗。
我想,我又收获了:非淡泊无以明志,非宁静无以致远。
曾经,我在《成长日记》中写下:在平凡中创造不平凡。如今,我在《星语》里再度挥笔:在平淡中看透世事繁华。
顺水而行,船到桥头自然直;顺其自然,人至青春悄然行。
数学的神奇无处不在,每一个数字、符号都是他的凭证。今天,我也证实了这一点:数学的神奇。
数学课下课后,我无意间发现了一个规律,一个关于平方的规律。我摊开练习本,看见练习本上的密密麻麻的验算过程,突然,一个不起眼的算式引起了我的注意:52-42.这是一个很简单的算式,口算也能算出来:9,而9不正是5+4的和么?我又换了一个式子:62-52,结果是11,11也正是6+5的和。我感到非常惊喜,仿佛发现了新大陆似的,快要疯了。但是好奇的我又想:这是两个相邻的数的平方,那不相邻的可以么?于是我就又列了一个式子:52-32,并且很快的得出了结果:16,这时,我懵了,一时半会儿得不出结论,这令我很沮丧。
忽然,灵光一闪——为什么不从5与3的和或差来考虑呢?5+3=8,5-3=2,8×2=16!16不就是52-32的差么?我又试了试:72-42=49-16=33。(7+4×(7-4=11×3=33,结果一样!我是一个固执的人,继续想:既然正数可以,负数同样适用么?比如(-32-52=9-25=-16。(-3+5×(-3-5=2×(-8=-16。又是一个奇迹!这会不会是巧合呢?我换了大数试试:20002-19992=4000000-3996001=3999;如果用规律来计算的话,就是:(2000-1999×(2000+1999=1×3999=3999。哈哈,果然简便了很多!真是方便!小小的“+”“-”,具有着无穷的魔力,怎么不能说,数学是神奇的呢?
数学的“魔术”一个个被我“揭穿”,做到这一点,已经够了不起了,可我还誓不罢休,又接着算起了立方:43-33=64-27=37;33-23=27-8=19。这下,我可败下了阵,看来,还是“数学”略胜一筹,它再也露不出马脚了,我也甘拜下风。
——上课铃响了,清脆的铃声听起来格外悦耳,好像在庆贺我似的,取得了“破解家”的称号。虽然我还未看透数学,但是我却认识到数学是奇妙无穷的。
© 2022 xuexicn.net,All Rights Reserved.