1、论点的类型: ①中心论点 ②分论点
2、中心论点的位置:
①标题 ②开头 ③结尾 ④中间 ⑤文中未明确,结合全文概括
如何判断:
①是一个完整的表义明确的陈述句
②是针对论题论述
③针对全文的,文中论据能够证明该内容,该内容则为论点(分论点除外)
3、论点的提出方式:
①通过事例或生活现象、或俗语、诗句,引出论点
②开门见山直接提出中心论点
③层次论证,最后总结中心论点
举手投足是一把尺,它是衡量人的内在含金量的标准。含金量高的人,必然,我敢说必然,是一个伟大的人。屠格涅夫为了施舍路边的乞丐,翻遍了自己的钱包,却找不到一分钱,只得握住乞丐的双手说“我很抱歉,朋友”;雷锋在战友们不在时,把大家的衣服都洗干净晒了;***总理衣容整洁,谈吐大方,岂是朝夕而成的?或如《士兵突击》里的许三多,在班里的战友整天只知喝茶打牌的时候,一个人默默地搬运石头,愣是日积月累地修成了一条路……
议论文写作的首要任务是理性色彩浓郁,怎样才能达到呢?用设问。设问,可以针对事件,从事件的原因、本质与发展入手,运用假设思维、因果思维连续提出问题,进行讨论。设问的过程,也是分析的过程,也是理性展示的过程。例如:
苹果落地在我们看来是最寻常不过的事,苹果熟了掉下来砸着苹果树下的人也是司空见惯的,可苹果掉在牛顿头上却“砸”出了震惊世界的万有引力定律,“砸”出了奠定物理力学基础的三大力学定理,为科学事业的发展做出了卓越的贡献。你能说牛顿是因为比我们多了份机遇才有如此伟大的创造吗?假如曾经有苹果砸在你头上,会是怎样的结局呢?你是在抱怨今天真倒霉……
对比,是将论据中截然相反的两种情况进行比较。因为比较的双方形成鲜明的对照,互为衬托,所以,这种方法特别能突出一方面的性质,具有很强的论证力量,因而,用得也很普遍。
对比有两种情况:一种是“横比”,一种是“纵比”。“横比”是把同一时期的两种性质截然不同的事物进行比较。例如《变味的善良》的正反论证:
2008年奥运会是我们中国人的奥运,举国欢庆,气氛火热,圣火传递,同一世界,同一梦想。但是,不和谐的色彩也玷污了奥运火红的火炬、绿色的橄榄枝。据报道,8岁孩童用55天时间完成抵京“马拉松式”赛跑;10岁孩子捆绑双臂在激流中前行;8岁女孩在父亲陪同下步行3000多千米到达首都北京……这些行为引起中国甚至世界媒体的关注,其中不乏外国媒体以此对中国奥运的诋毁。不实评论需全力抵制,但也不可否认,这是“畸形奥运热”。我们举办一个理性的奥运,就需要理性的行为作支撑。热情由火热的激情变为疯狂。
再如《赞牺牲精神》的正反对比:
太原工学院副教授栾弗,归国定居的年轻女科学家赵芬,上海生物制品研究所九旬老人徐良董,浙江省象山县无机轻体板材厂女青年郭秀莲与王竹平等人,为社会建设甘愿牺牲一时一已的利益直至个人生命。
可惜,现在有些人还缺少这种牺牲精神。他们脑子里装的不是党和人民的利益,而是个人眼前的“实惠”。不是吗?……这种极端利已者的人生观,和前面那种人相比,显得何等渺小,和我们今天的历史重任何等不相称?
“纵比”是把同一事物在不同时间的不同情况作比较。往往讲到一个地区,一个单位的发展形势,群众生活过去与现在的变化,使用的就是这种对比方法。
这种方法是将一类事物的某些相同方面进行比较,运用类比推理形式进行论证。例如,下面这段文字,就是类比论证,用了“农夫与蛇的故事”类比,证明“不要说你是好心”的观点:
不要说你是好心,当你暴虎冯河、黔驴技穷之时。农夫与蛇的故事众人皆知:好心的农夫看到被冰冻住、奄奄一息的蛇,便用温暖的胸怀融化冰雪,蛇苏醒了,却反咬农夫一口,农夫赔上了自己的生命。故事告诉我们,不要去拯救那些难以拯救的小人。可在我看来,这也是农夫自不量力的表现,总以为自己可以拯救别人并不让自己受伤。现实生活中此类事情屡屡皆是,不知有多少人以为自己可以赤手空拳地救出那些溺水、跳楼之人,却因为缺乏工具及技巧而害死别人,甚至自己也赔上一条命。这种“好心”,难道会被接受吗?
再如:
最后谈谈练基本功的问题。基本功对拿笔杆子的人很重要,不练是不行的。俗话说:“拳不离手,曲不离口”,绘画的人常画,唱歌的人常唱,而搞文字的人怎么可以几个月不写东西呢?……
这里,写作、绘画、歌唱可以类比,因为这些都属于文艺创作的范围,有相同的本质属性。
2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。
3、四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。
4、大小比较
(1比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的\'数大那个数就大。
(2比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
(3比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
© 2022 xuexicn.net,All Rights Reserved.