函数在某一点x。连续的定义是在x。的某邻域内有定义且满足当x趋于x。时,函数f(x)趋于f(x。)。而在某区间上的连续可由在某点推广。对一闭区间上连续的函数有一些性质,如:有界性、最值、介值性和一致连续性。对于函数连续性,重在理解定义的内容。
数学分析是精彩有趣的,但有时会让人学的很累。当一个概念或思想没有理解时,在很大层度上阻碍了后面内容的学习理解,让人有雾里探花的感觉。所以应脚踏实地的学好每一步,扎稳基础,相信未来的道路是光明的。
不定积分和定积分。不定积分是微分的逆运算,它的核心思想是将许多无法解决或难以解决的事物积累成一个整体来解决。不定积分的运算有一些方法,如:换元法和分部积分法。与不定积分不同,定积分则是一个分割t的模趋于零的极限。
对一个闭区间上的函数作划分,求出黎曼和,当分割的模趋于零时,黎曼和趋于一个常数,此时称这个常数为函数在闭区间上的定积分。定积分的运算可运用牛顿—莱布尼茨公式。哪些函数是可积的,可积函数有哪些性质。人们发现了可积函数需满足的条件和它的一些性质,如:积分中值定理。
© 2022 xuexicn.net,All Rights Reserved.